How I Learned to Stop Worrying and Love
Re-optimization

Matthew Perron
MIT CSAIL
mperron @csail.mit.edu

Zeyuan Shang
MIT CSAIL
zeyuans @mit.edu

Abstract—Cost-based query optimizers remain one of the most
important components of database management systems for
analytic workloads. Though modern optimizers select plans close
to optimal performance in the common case, a small number of
queries are an order of magnitude slower than they could be.
In this paper we investigate why this is still the case, despite
decades of improvements to cost models, plan enumeration, and
cardinality estimation. We demonstrate why we believe that a
re-optimization mechanism is likely the most cost-effective way
to improve end-to-end query performance. We find that even a
simple re-optimization scheme can improve the latency of many
poorly performing queries. We demonstrate that re-optimization
improves the end-to-end latency of the top 20 longest running
queries in the Join Order Benchmark by 27 %, realizing most of
the benefit of perfect cardinality estimation.

Index Terms—Cardinality Estimation, Query Optimization,
Dynamic Query Re-optimization

I. INTRODUCTION

The basic structure of query optimizers, dating back to
the pioneering paper in 1979 [1], is known to suffer serious
performance problems. Notably, selectivity estimates assume
the independence of columns in a table or across joins and
also assume a uniform distribution of data elements in each
column. In the real world, correlation between columns is
widespread. For example, salary is usually correlated with age.
Also, column values are often strongly skewed, for example
40 stocks out of 4000 in the NYSE account for 50% of
the total volume of trades. Moreover, estimates for the size
of intermediate tables become increasingly imprecise as one
ascends higher in the plan tree.

Surprisingly, even with simplifying assumptions, query opti-
mizers mostly choose plans that are near optimal performance
even when cardinality estimates are wrong. But in a minority
of cases, the optimizer chooses plans that are many times
slower than optimal. This can significantly slow down the
end-to-end execution time of query workloads. Put simply,
a small number of optimization mistakes leads to workload
performance far below what is possible. The purpose of this
paper is to shed light on profitable directions to explore.

Leis et al. [2] provide experimental evidence that cardinality
estimates, particularly join cardinality estimates, are poor and
can result in queries with noticeably sub-optimal plans. The
inference is that improving estimates would result in better
plans. In Figure 1 we consider the 20 longest running queries
in the Join Order Benchmark [2] (JOB). The total query

Tim Kraska
MIT CSAIL
kraska@csail.mit.edu

Michael Stonebraker
MIT CSAIL
stonebraker @csail.mit.edu

400
350
300
250
é 200
= 150
100
50 l
0
PostgreSQL Perfect-(3) Perfect-(4) Re-optimized Perfect
M Execute MPlan
Fig. 1. Total Query planning and execution times for the top 20 longest

running queries in JOB with the default PostgreSQL optimizer.

planning time, including optimization, of all 20 queries is in
orange and the time to execute the resulting plans is in blue.
We define perfect-(n) as a cardinality estimator with perfect
estimates for joins of n tables and fewer. We then compare
the PostgreSQL optimizer with perfect-(3), perfect-(4), a re-
optimization scheme, and all perfect estimates. perfect-(3)
achieves no improvement for the longest running queries,
while perfect-(4) and re-optimization improve end-to-end la-
tency by 25%. This is a worst-case scenario since we assume
ad-hoc queries that have to be optimized before execution.
If we instead assume a recurring workload where optimized
query plans have been cached from previous executions, the
improvement with re-optimization is over 35%, including
about 30 seconds to re-optimize. We conclude that improve-
ments to cardinality estimates that do not approach perfect-(4)
will not improve the end-to-end latency of JOB. This level of
improvement currently seems out of reach. However, We find
that much of the benefit of perfect estimates can be realized
with re-optimization strategies.

In Section II we examine how much cardinality estimates
must be improved to significantly improve the execution time
of JOB. We then consider re-optimization strategies as an
alternative in Section III. For more detailed information, see
our full report on arXiv.

II. ON CARDINALITY ESTIMATION IMPROVEMENT

We first consider how the quality of cardinality estimates
impacts the runtime of JOB.

Relative Runtime | Number of Queries
0.1-038 7
08-12 32
1.2-20 28
2.0-5.0 32
> 5.0 14
TABLE 1

EXECUTION TIME OF JOB QUERIES WITH POSTGRESQL CARDINALITY
ESTIMATION RELATIVE TO PERFECT-(17)

We modified PostgreSQL 10.1 allowing us to replace the
PostgreSQL cardinality estimates with arbitrary values. We
then compare the performance of different cardinality esti-
mation schemes. We add indexes on foreign key columns, as
suggested by Leis et al. [2], making access path selection more
challenging.

JOB, proposed by Leis et al. [2], contains a set of 113
queries on the Internet Movie Database (IMDB) dataset. Each
query is a select-project-join query with 4 to 17 tables and
only equi-joins. This real world dataset includes both skew and
correlation. Thus, queries in JOB have proved more difficult
for optimizers to choose good plans than standard decision
support benchmarks like TPC-H [3]. As a result, JOB is a
popular choice for evaluation in recent query optimization
work.

We execute our experiments on a nl-highmem-4 vir-
tual machine instance on Google Cloud Platform with a
256GB SSD persistent disk, and 26 GB of memory. We
disable intra-query parallelism, and set shared_buffers,
temp_buffers, and work_mem to 400MB each. Because
PostgreSQL, in addition to managing it’s own buffer pool, uses
the file system’s large buffer cache, all tables and indexes are
cached in memory.

To give PostgreSQL the best chance at good cardinality
estimates, we set the default_statistics_target to
it’s maximum value and execute ANALYZE to collect statistics.

We define “planning time” as the time to parse and optimize
the query and “execution time” as the time spent on execution
of query plans.

A. Quality of Cardinality Estimates and Execution Time

We explore how the quality of improved cardinality esti-
mates impacts the execution time of the workload. To get a
rough estimate, we define perfect-(n) as a version of Post-
greSQL where the cardinality estimator is given an oracle for
cardinality estimates on joins of n tables and fewer. Perfect-(n)
has an oracle for a subset of cardinality estimates of perfect-
(n 4+ 1). To estimate the cardinality of joins of more than n
tables, the default PostgreSQL cardinality estimate is used,
with perfect estimates of n tables and fewer used as input.
For example, to make an estimate of a join of 5 tables in
perfect-(4), the cardinality estimator receives as input perfect
base table cardinalities and join cardinalities of up to 4 tables,
but otherwise uses its default estimation techniques including
independence and uniformity assumptions. The quality of
estimates for joins of 5 tables are, on average, better with
perfect-(4) than perfect-(3). Perfect-(1) gives only perfect base

table cardinality estimates. Since the there are at most 17
relations in JOB perfect-(17) has perfect cardinality estimates.
We find perfect estimates on base tables, pairs of tables,
and triples give virtually no benefit to JOB execution time.
Surprisingly, any method of improving cardinality estimation
that does not achieve estimates better than perfect-(3) can
expect to achieve nearly no improvement to execution time.

We look at the potential for execution time improvement
in JOB by comparing plans generated with PostgreSQL cardi-
nality estimates to plans generated with perfect cardinalities.
While it is possible that better plans are not in the search space
of PostgreSQL, perfect cardinality estimates improve execu-
tion time of the benchmark by a factor of two. This means
much better plans are in the search space of the optimizer
but are simply not chosen due to cardinality estimation or
cost model errors. Less than 15% of queries in the bench-
mark have execution time more than five times the optimal
execution time, seen in Table I. Errors in just 20 queries
make up more than 95% of the execution time difference
of perfect estimates and PostgreSQL estimates, not including
query planning time. Surprisingly, the PostgreSQL cardinality
estimation model, assuming no correlation between columns
and assuming uniformity chooses plans with execution time
within a factor of two of a plan generated with perfect
cardinalities in nearly 60% of queries. This indicates that for
most queries the additional cost of building more statistics
or sampling to improve estimates will not decrease query
execution time substantially, but may slow down planning
time.

One challenge in improving cardinality estimates is how
many must be accurately predicted. While query optimizers
use heuristics like avoiding plans with Cartesian products, the
number of estimates made by the cardinality estimator is still
large. The PostgreSQL cardinality estimator makes more than
13 thousand estimates for the most complex query in JOB.
Given this number of estimates, approaching perfect-(4) for a
large range of queries seems to be exceedingly difficult. It is
particularly challenging because perfect-(4) requires perfect-
(3), perfect-(2), and so forth. While not every dataset and
workload have the same properties as JOB, this is evidence of
the challenges of standard approaches to improving cardinality
estimation.

B. Selective Improvement of Cardinality Estimates

One suggestion to improve cardinality estimates is to dis-
cover cardinality estimation errors during query execution,
and correct them in future executions of similar queries.
LEO [4], is an example of this approach. To demonstrate
the limitations of these techniques, we take a set of poorly
performing queries and find the lowest join operator in the
plan tree with cardinality estimates 32 times larger or smaller
than the true cardinality. We set estimates for the join and all
estimates below it in the plan tree to their true values then plan
and execute the query again. We continue this process until
no operator has an estimation error larger than the threshold.
This is the best case for incremental improvement strategies

80
60
40
20

Execution Time (s)

100

50

Execution Time (s)

0 10 20 30 40
15

10

Execution Time (s)

0 10 20 30 40 50

Num lIterations

Fig. 2. Execution time of queries with iterative improvement of cardinality
estimates. The dotted line is execution time with perfect estimates. From top
to bottom, plots of queries 16b, 25¢, and 30a.

since we execute the same query repeatedly and fix cardinality
estimates perfectly. In practice, correcting cardinality estimates
through executed queries is more challenging since queries or
data may change over time.

In Figure 2, we plot the execution time of queries 16b,
25¢c, and 30a as we incrementally improve their cardinality
estimates as described above. We compare their execution
time to that chosen using perfect cardinality estimates. For
some of the worst performing queries, many corrections to
cardinality estimates are required before discovering a good
plan. Query 16b is executed 24 times before an efficient plan
is chosen. In queries 25c¢ and 30a, the query optimizer chooses
a plan near optimal with a small number of cardinality esti-
mate corrections. However, continuing to improve estimates
causes the optimizer to choose plans several times slower
than optimal. This means that correcting only a subset of
cardinality estimates can cause the optimizer to choose query
plans significantly slower than the original plan, as seen after
19 iterations on query 25c. To arrive at a plan near optimal,
all catastrophic plans must have higher costs than a good plan.
This is difficult to guarantee when improving only a subset of
cardinality estimates.

III. RE-OPTIMIZATION

We next explore how much of the benefit of perfect car-
dinality estimates can be realized with dynamic query re-
optimization.

We simulate a simple query re-optimization scheme by
examining the EXPLAIN ANALYZE output of each query and
comparing the true cardinalities to the those predicted by the
PostgreSQL cardinality estimator. For the lowest join operator
in the query plan with a true cardinality a factor of n larger

400
300

012 3 456 9 1011 12 13 14 15 16 17
Perfect()

M Perfect-(n) m Perfect-(n) Re-optimized

20

=
o
o

Execution Time (s)

Fig. 3. Total execution time of JOB varying the quality of estimates from
perfect-(0) to perfect-(17), with and without re-optimization

or smaller than the estimated cardinality, we rewrite this sub-
query to create a temporary table instead. For the remainder of
the query, we replace all the tables in the poorly estimated join
with the temporary table and re-plan. We repeat this procedure
until no join operators in the query plan have a cardinality
estimate a factor of n different from the true cardinality. While
materialization of intermediate results may be expensive, it
gives the optimizer a chance to correct itself for the rest of
the execution.

We then measure the planning and execution time for the
resulting “re-optimized” query. For the planning time, we sum
the planing time of the original query and the planning time
of the SELECT queries. We do not include the time required
to plan the creation of temporary tables since this is already
included in the original query planning time. Thus the re-
optimized query is a series of CREATE TEMPORARY TABLE
commands followed by a SELECT query to generate the final
result.

Total execution time is measured by summing the execution
time of each CREATE TEMPORARY TABLE command and
the final SELECT query. We report execution and planning
time as reported by PostgreSQL’s EXPLAIN ANALYZE com-
mand. Unless otherwise noted, we report only the execution
time of queries, and exclude parsing and optimization time.
For many short-running queries in JOB, PostgreSQL planning
time exceeds execution time. Clearly it does not pay off to
re-optimize these queries.

We believe this is a reasonable approximation of a simplis-
tic re-optimization scheme. Although it is possible that this
approximation breaks a pipeline present in the original query
plan, our simulation provides a reasonable approximation for
the upper bound of the cost of re-optimization schemes,
since it requires a full materialization of intermediate tables.
More sophisticated re-optimization schemes like Rio [5], may
perform better than our simulation.

A. Re-optimization Triggers

Clearly the decision of when to re-optimize is critical to
a scheme’s performance. In our setup we re-optimize when
the relative cardinality estimate error crosses a threshold. If
the true cardinality of a join is n times more or less than we
expect, we materialize the result and re-optimize the rest of the
query. That is, we re-optimize a query when the Q-error [6]

Perfect

Re-opt I "I ne N
PostgresQL || NI I D N [I
0 50 100 150 200 250 300 350 400
Execution Time (s)
Fig. 4. Total execution time comparison of perfect, re-optimized, and

PostgreSQL by query, ordered by execution time on PostgreSQL.

exceeds a threshold value. If the threshold is too low even
good plans may be unnecessarily re-optimized. If set too high
re-optimization will never be triggered. We experimented with
varying the re-optimization threshold and observed the impact
on planning and execution time, comparing to PostgreSQL and
using perfect estimates. Based on these experiments, we found
that setting the threshold to 32 gives the best query execution
time improvement. Therefore we set the threshold to 32.

Surprisingly, even re-optimizing at a threshold of two, the
lowest we tested, only increases the query planning time by
about 42% over PostgreSQL while decreasing the execution
time by 40%. It is worth noting that the planning time remains
constant independent of the data size while the execution time
will increase with the size of the data. While planning time
is significant, sometimes exceeding execution time, this is a
result of the small size of the IMDB dataset, rather than the
excessive costs of planning. Frequent materialization of tables
by setting the threshold to a relatively low value of two has
a minimal impact on query execution time. A re-optimization
threshold of two degrades performance only 10% compared
to the lowest re-optimization execution time measured. This
indicates that, at least for JOB, setting the re-optimization
threshold too low is still better than not re-optimizing at all.

With longer running queries, the additional cost of planning
is likely negligible. Because we expect that re-optimization
will provide the most benefit for longer running queries
taking several minutes, we report only execution time for the
following experiments.

B. Re-optimization and Better Cardinality Estimates

We believe that without a redesign of the query optimizer,
query re-optimization is most likely to lead to the biggest
gains in end-to-end query latency. However, if a method to
improve cardinalities approaches perfect-(3) or perfect-(4), re-
optimization can still improve execution time. As cardinality
estimates improve, the need to re-optimize decreases. In Fig-
ure 3, we compare perfect-(n) plus re-optimization for varying
values of n. We see that re-optimization improves the latency
of perfect-(n) estimates until perfect-(5). While re-optimizing
perfect-(5) slows the execution of the workload, the risk is
relatively small, The execution time of the benchmark is only
6% slower with re-optimization than only perfect-(5).

C. The Benefits of Re-optimization

In Figure 4 we compare the execution time of standard Post-
greSQL to perfect-(17) and our re-optimization simulation. We

visualize the total execution time by query, and order queries
from shortest to longest in the original PostgreSQL execution.
Note that this figure does not include planning time. While re-
optimization does not significantly improve the execution time
of most of the shortest queries, the impact of re-optimization
on the longest running queries achieves much of the benefits
of having perfect estimates. Thus, we find there is no need
to re-optimize the shortest queries, particularly because the
re-optimization may exceed query execution time.

D. The Risks of Re-optimization

While query re-optimization has a clear benefit for JOB
it is not without risks. In several queries the execution time
increases significantly from default PostgreSQL. In fact, the
worst performing re-optimized query has more than 100 times
worse execution time than the original query executed by
PostgreSQL. However, since the original execution time of
the query is only about ten milliseconds, the impact on the
execution time of the whole benchmark is negligible. This
can be avoided by re-optimizing only long-running queries.

IV. CONCLUSION

In this paper we showed that a simple re-optimization
strategy achieves much of the benefit of perfect cardinality
estimation in JOB. While we confirm that having perfect
cardinality estimates is a clear way to improve query plans,
we show that achieving estimates good enough to impact
execution time of a workload is daunting.

Much re-optimization work was performed more than a
decade ago. Our experiments show that re-optimization sig-
nificantly improves query execution time compared to default
PostgreSQL cardinality estimates on a single threaded row
store for a single workload. However, modern query execution
engines are heavily pipelined, compile queries, execute on
many machines, or use columnar storage. Re-optimization
becomes more complex with these developments. If a query
is re-planned, this may require another expensive compilation
phase. But the costs of more sophisticated schemes remain
unclear. More work is needed to determine the benefits and
feasibility of re-optimization for modern workloads on modern
systems.

REFERENCES

[1] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price, “Access path selection in a relational database management sys-
tem,” in Proceedings of the 1979 ACM SIGMOD international conference
on Management of data. ACM, 1979, pp. 23-34.

[2] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann,
“How good are query optimizers, really?” Proceedings of the VLDB
Endowment, vol. 9, no. 3, pp. 204-215, 2015.

[3] The Transaction Processing Council, “TPC-H Benchmark (Revision
2.16.0),” http://www.tpc.org/tpch/, June 2013.

[4] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil, “Leo-db2’s learning
optimizer,” in VLDB, vol. 1, 2001, pp. 19-28.

[S] S. Babu, P. Bizarro, and D. DeWitt, “Proactive re-optimization,” in
Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. ACM, 2005, pp. 107-118.

[6] G. Moerkotte, T. Neumann, and G. Steidl, “Preventing bad plans by
bounding the impact of cardinality estimation errors,” Proceedings of the
VLDB Endowment, vol. 2, no. 1, pp. 982-993, 2009.

