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ABSTRACT

Statistical knowledge and domain expertise are key to extract
actionable insights out of data, yet such skills rarely coexist
together. In Machine Learning, high-quality results are only
attainable via mindful data preprocessing, hyperparameter
tuning and model selection. Domain experts are often over-
whelmed by such complexity, de-facto inhibiting a wider
adoption of ML techniques in other fields. Existing libraries
that claim to solve this problem, still require well-trained
practitioners. Those frameworks involve heavy data prepa-
ration steps and are often too slow for interactive feedback
from the user, severely limiting the scope of such systems.
In this paper we present Alpine Meadow, a first Interactive
Automated Machine Learning tool. What makes our system
unique is not only the focus on interactivity, but also the
combined systemic and algorithmic design approach; on one
hand we leverage ideas from query optimization, on the other
we devise novel selection and pruning strategies combining
cost-based Multi-Armed Bandits and Bayesian Optimization.
We evaluate our system on over 300 datasets and compare
against other AutoML tools, including the current NIPS win-
ner, as well as expert solutions. Not only is Alpine Meadow
able to significantly outperform the other AutoML systems
while — in contrast to the other systems — providing interac-
tive latencies, but also outperforms in 80% of the cases expert
solutions over data sets we have never seen before.

ACM Reference Format:
Zeyuan Shang! Emanuel Zgraggen! Benedetto Buratti? Ferdi-
nand Kossmann' Philipp Eichmann? Yeounoh Chung? Carsten

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD 19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06...$15.00
https://doi.org/10.1145/3299869.3319863

Binnig?3 Eli Upfal?> Tim Kraska' . 2019. Democratizing Data Sci-
ence through Interactive Curation of ML Pipelines. In 2019 Inter-
national Conference on Management of Data (SIGMOD °’19), June
30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3299869.3319863

1 INTRODUCTION

Truly democratizing Data Science requires a fundamental
shift in the tools we use to analyze data and build models
[18]. On one hand it requires to move away from Python-
like scripting languages, SQL and batch processing to visual
and interactive environments [10, 15, 21, 26, 33, 43]. On the
other hand, it requires to significantly reduce the required
expertise to build a machine learning pipeline. Ideally, a user
should be able to specify a high-level task (e.g., predict label
X based on my data), and the system automatically composes
a machine learning pipeline to achieve that task, including
all necessary data cleaning, feature engineering, and hyper-
parameter tuning steps.

The latter challenge is largely referred to as AutoML or
Learning to Learn and comes in various flavors. For example,
there already exists a huge amount of work on a subset of
the problem: automatic hyper-parameter tuning and model
family selection. Most noticeable, TuPAQ [35, 37], Hyper-
band [22] and the various Bayesian Optimization approaches
[11, 17, 40] all have the goal to automatically determine the
best model family (e.g., SVM vs Linear regression) or pa-
rameters for a given algorithm (e.g., step-size, kernel, etc.).
However, hyper-parameter and model selection is only one
aspect of automatically finding the best ML pipeline for a
given task. Rather an end-to-end solution also has to consider
data cleaning operation, feature engineering, and potentially
even data augmentation and transfer learning. For example,
in some cases min-max scaling and feature crosses might
help, whereas in others standard scaling and feature selec-
tion to avoid over-fitting is the better choice. In some cases
filtering out outliers and imputing missing values can have
significant benefits, whereas in others it harms the accuracy.

The closest existing solutions, which allow such end-to-
end training are probably the recent Learning to Learn ap-
proaches to find neural net (NN) architectures [3, 45]. The
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view of some purist is that the input of a NN should be
the raw data and that the model if correctly tuned, for
example, by an automatic NN architecture search should

other AutoML tools is the joint algorithmic and system-based
approach to ML auto-tuning, the focus on interpretable ML
pipelines, and our goal to produce a high quality results in

do all the rest. However, deep learning based approaches less than a few seconds.

only work with huge amount of training data and output

a black box solution (i.e., a neural net), which is extremely
hard to interpret. While this approach might be amenable for
some scenarios, many real-world problems are rather small
in terms of data size. For example, in the current DARPA
D3M AutoML competition, only5%out of the 300 datasets
are actually larger than 10MB. We made similar observations
when working with our partners in industry and hospitals.

More importantly though, we are not aware of a single Au-
toML solution, which can provide interactive response times
to enable users to steer the computation and contribute to
the optimization with their domain knowledge. For example,
Google's Architecture search can run for weelkd,[whereas
even SciKit-Learn's Hyperparameter Tuner often take hours
before producing a rst high-quality result. At the same
time, interactive response times are key: users should see
and understand how the system tries to nd the best possible
AutoML pipeline and potentially contribute their knowledge.
For example, a doctor might decide to remove questionable
features from the training set after seeing that the model
starts to rely too much on it. Furthermore, as shown in inter-
active data exploration44), interactive response times can
improve the rate at which insights are uncovered: a team
might try to build a model quickly during a meeting rather
than having a week-long back and fourth between meetings,
coding and running experiments, etc.

In this paper, we presenilpine Meadowa rst interactive
AutoML tool, which is intended to be integrated into a visual
environment similar to Tableau or Vizdoni[J. However, for
this paper our focus is entirely on the ML optimizer rather
than the visual integration and user feedback. Furthermore,
we have a particular focus on small data and traditional sta-
tistical supervised machine learning pipelines, rather than
architecture search for neural nets, unsupervised learning, or
automatic data acquisition and cleaning. While the here de-
scribed optimization framework can be easily extended with
these operations, and in fact, our implementation already
does support many of them (e.g., transfer learning for neural
nets, unsupervised learning) describing and evaluating these
operation in detail is beyond the scope of this paper.

Interestingly, the problem of nding the best possible ML
pipeline for a given task (e.g., classify X) has many common-
alities with query optimization as already pointed out in
the MLBase vision paperlf. It requires to explore a po-

In summary, our end-to-end interactive and automated

machine learning system makes the following contributions:
We present a novel architecture of an AutoML system
with interactive responses.
We show how rule-based opimization, can be com-
bined with multi-armed bandits, Bayesian optimiza-
tion and meta-learning to nd more e ciently the best
ML pipeline for a given problem. Here, the novelty lies
in the fact how we combine the various techniques
into a single system.
We devise an adaptive pipeline selection algorithm to
prune unpromising pipelines early by comparing train
and validation errors on increasingly larger sample
sizes of training instances.
We show in our evaluation thaflpine Meadovsignif-
icantly outperforms other AutoML systems while in
contrast to the other systems provides interactive
latencies on over 300 real world datasets. Furthermore,
Alpine Meadowoutperforms expert solutions in 80%
of the cases for datasets we have never seen before.
Finally, as of April 201%RIpine Meadowvas ranked
rst in DARPA performed D3M Automatic Machine
Learning competition.

The remainder of this paper proceeds as follows. In Sec-
tion 2 we provide a system overview, whereas Section 3 to
7 discuss the di erent auto-tuning steps. We evaluate our
system and compare with baselines and other systems in
Section 8, summarize related works in Section 9, and nally
conclude in Section 10.

2 OVERVIEW

In this section we give an overview dilpine Meadovand
introduce the main terminology.

2.1 System Architecture

Alpine Meadowis part of Northstaf18, a system for Interac-
tive Data Science where domain experts interact with data
through an interactive visual environment calledéizdonj1Q.
In this environment, a prediction problem can be speci ed
through drag and drop gestures and can be as simple as
binary classi cation (i.e. spam detection) or as complex as
graph community detection.

Based on such a problem speci catiohlpine Meadowvill

tentially enormous search space and select the best possible@utomatically begin to search and progressively return ma-

plan (i.e., pipeline). We therefore borrow many ideas from
query optimization including rule-based search-space cre-
ation. Yet, what di erentiates our approach the most from

chine learning pipelines to the end-user. The system gradu-
ally optimizes over the search space, and periodically returns
best-so-far pipelines to the end-user. Unlike other AutoML



systems, we envision our system to be used in an interactive equivalent logical query plans. For example, a rule might

setting, which allows users to constrain and re ne a problem, say that all categorical features should be one-hot encoded,

early stop a search and embed their domain knowledge. or that numerical features can be scaled. Also similar to
logical query planslogical pipelineslo not yet contain any
details about how the pipeline should be executed (e.g., no
hyper-parameters are set).

This step is best compared to asking the data scientist: "What
can | do to predict X based on my data" and she lists a whole
bunch of options, e.g., di erent ways of encoding categorical
features, scaling numerical features and feature selection, and
di erent models for prediction.

Figure 1: Optimization loop: (1) search space model,
(2) logical-plan selection, (3) physical-plan selection,
(4) pipelines evaluation and pruning, (5) search space
model update, (6) data augmentation

2.2 The Optimization Process

The core design idea is to solve ML problems by emulating
the decision-making process of an experienced data scientist.
How does an experienced data scientist approach a prob-
lem: First, she would inspect the data and, based on her
experience, make high-level decisions about feature scaling,
embeddings, data cleaning, etc. The key is to start out simple.
Furthermore, the data scientist would probably use a reliable
and often successful model family, such as random forests,
and check for the most common mistakes (e.g., imbalance of
labels or duplicate label columns). Finally, the data scientist
would setup a simple optimization strategy for the primi-
tives' hyper-paremeters and if the data is large, probably
rst try to build a model over a sample of the data. Then,
after initial results, the data scientist will start to modify the
pipeline by adding more complex processing steps, changing
the model family, adding/removing features, increasing the
sample size and so on. Itis an iterative and incremental pro-
cess. Itis further a process with memory as the data scientist
remembers, what worked well over what data in the past.

This process is exactly what we aimed to mirror and au-
tomate in our system. We therefore broke our architecture
up into steps that data scientists perform, which has the ad-
vantage to make the problem more tractable than treating
it as optimization problem on a gigantic and heterogeneous
space. Figure 1 shows the individual stepshilpine Meadow

(1) Search SpaceThe system rst creates a search space
of logical pipelineswe de ne alogical pipelinglan as:

Definition 1.  Logical Pipeline Plan: a Directed Acyclic
Graph (DAG) of primitives, with their hyper-parameters’do- (3) ppysical Pipeline Selection: After selecting thelog-
main speci cation (not xed). ical pipelinesthey are instantiated intd physical pipeline

We create the logical plans through applying rules, sim- plans, which are de ned as:
ilar to how SQL transformation rules can create a space of

Figure 2: An example pipeline. The boxes in red show
xed hyper-parameters and they compose a physical
pipeline plan with this DAG. While the boxes in green
give distribution of hyper-parameters and they com-
pose alogical pipeline with this DAG.

(2) Logical Pipeline Selection: Similar to query opti-
mization the space of all possiblegical pipelinegan be
huge. We therefore select the most promisilogical pipelines
based on a cost/quality model learned from past experiments
to favor fast pipelines to provide better interactivity.

This step is best compared to asking the data scientist What
should I try rst. A data scientist will provide you with a few
good general options after taking a quick look at your data.
For example, she might say Try to normalize all features and
use a boosted decision tree as a start or she might say, Given
the data size, don't even try neural nets .



Algorithm 1:  PipelineSelection (5) Iterative Re nement: By evaluating di erentphysi-
Input: ProblemP, DataseD , Q cal pipelineswe gathered some experience over th_e current

1 while Q.has_spaceo dataset tha_t we can use to update our cost- a_nq qugllty—model

) Ip  NextLogicalPipeline?, D) to seleciogical pipelinend the Bayesian-Optimization model

. L for selectingphysical pipeline
s NextPhysicalPipelines(l . . .
s bp y P (1) This step can be best compared to the iterative re nements

4 Q-putAll(pps) that a data scientist performs after that she observes the results
_ — - from a tested model.

Algorithm 2: PipelineExecution (6) Data Augmentation: A more recent step that we
Input: ProblemP, DataseD , Q, SCOr@est started adding to the process is automatic data augmentation.
Output: Pipeline Found That s, as part of step (1) we now also consider, if we can use

1 while 'Q.emptydo already trained models as starting solutions or to create new
2 | p Q .take() features. For example, if the goal is to train a classi er based
3 | for score AdaptivePipelineSelectionp) do on only 100 training images, the most promising solution is
4 if score scorgest then to actually transfer an existing model or use existing mod-
5 SCOrgest  score els to create more powerful features for the given images.
6 yield pipelingest Currently, we only use this approach for image tasks but
i i , o with very remarkable results. While not discussed in detail
7 | Update models using running history of pipeline; in this paper, we brie y outline that our system can easily

. . L be extended to support this.
Definition 2. Physical Pipeline Plan: an end-to-end As we showedAlpine Meadowtries on a high-level to

solution to a user-de ned problem, represented as Directegmulate the steps a data scientist takes. Furthermore, as the
Acyclic Graph (DAG) of primitives with xed hyper-parameters. distinction between dogical pipelinendphysical pipelinal-

An example of physical pipeline plan is shown in Figure 2. ready shows, our optimizer has many similarities with tradi-
Physical pipelineare generated from #ogical pipelinevia tional query optimization and a lot of optimization potential
Bayesian Optimization_ Eadbgicai pipeiiné‘iyper-parameters exists as we discuss in the remaining sections. It should also
space has an associated performance_modei used to nd be noted, that this is not the Only way to build an interactive
promising con guration_ If a|ogica| pipe“nmas never been end-to-end AutoML tool and in Section 7 we discuss alterna-
used, there is not any model associated with it, hence we tive designs. However, like the original Selinger pap8g]|
start out using default or random con gurations. As soon  ©On query optimization, it is a start, and will hopefully result
as the rst results are collected, our system starts to select in various follow up work.
the next hyper-parameters based on Bayesian-Optimization. . )

The logical and physical plans are a vague analogy to the 2-3 Algorithmic Walkthrough
query optimization, howevephysical pipelinglans don't Algorithm 1 and 2 provide a simpli ed outline of the entire
include any implementation details as the physical plans in optimization process following the previous described steps

guery optimization do. (minus the augmentation). First, we create a mad¥gveline
This step is best compared to turning the general pipelineSelectiothread running Algorithm 1, and severdipeline
into actual Python code. Executiorworker threads. The two are connected through a

(4) Incremental Execution: For large datasets, it is of-  xed size execution queu®. Every time the queue has free
ten bene cial to run aphysical pipelin®n a smaller sample  space, thé”ipeline Selectidhread tries to nd a promising
rst, and then if the results look promising try it on a larger  logical pipelineand based on it creatésphysical pipelines
portion of the dataset. We therefore, treat every physical to execute, which it then adds to the execution queue.
plan as a bandit arm, from which every pull increases the ~ Whereas the worker threads take upphysical pipeline
sample size. The bandit mechanism together with the sam- from the queue and execute it using our sample-based execu-
pling guarantees that we focus our attention on promising tion strategy (line 3 in Algorithm 1). Note, that for a single
pipelines early on and get good results quickly, which we physical pipelineve receive more than one scores, as we
can stream back to the user with short response time. incrementally train and test the sampled pipelines. If the
This is similar to a data scientist rst building a model over score for a pipeline is higher than the so far best seen score,
a sample of the data before using all available data especiallyve report it to the user (line 4-7) and update our history of
when the data is big. pipeline runs to make better decisions in the future (line 7).



3 RULE-BASED SEARCH SPACE

Data scientists rely on their expertise and past experience
to solve challenging problems. We imitated this process by
adapting the idea of rule-based search space de nition com-
monly used in database optimizers to our AutoML system.
Rules in our system encapsulate best practices similar to
those data scientists might use. Given the de nitions in the
previous section we propose three kinds of rulgsimitive,
parametetand enforcement rules

Primitive Rules add new primitives to the search space
dependent on the task (e.g., using di erent algorithms for
classi cation, regression, recommendation, or graph-related

problems) or the dataset schema (e.g., applying one-hot en-

coding for categorical features). Until now, we have inte-
grated close to hundred primitive rules derived from winning
Kaggle competitions, expert solutions to problems provided
by DARPA, and interviews with data scientists. These rules,
for example, include things like encoding categorical fea-
tures, scaling numerical values, imputation of empty values,
selection of features, choosing models for di erent problem
types, extracting features from raw text and images, building
the graphs for graph datasets etc. Primitive rules are used to
build and rewritelogical pipelinesApplying a rule can either
start a newlogical pipeliner extend existing ones by adding
primitives that operate on all or a subset of columns. What
makes our approach unique is that we create two types of
logical pipelines
General logical pipeline : General pipelines always
use primitives over all features if they share the same
semantic type, and only use one primitive type per
category. For example, a general pipeline would en-
code that we run a one hot encoder on alitegorical
columns, a min-max scaler on alumericalcolumns,
then do an SVD on the concatenation of these two
results, and feed them into a SVM. A general pipeline
would thus not use two di erent encodings for the
same numeric feature, or rst apply min max scaling
followed by standard scaling. This approach allows
us to severely restrict the number of genetalgical
pipelineand also make the transfer learning of pipe-
lines between di erent datasets possible.
Data-speci ¢ logical pipeline : These aréogical pipe-
lineswith no restrictions on the primitive compositions

Parameter Rules generate reasonable distributions for hyper-
parameters of primitives. For example, a rule might be that
the set of possible values for the kernel of a SVM hnear,
poly, sigmoidor rbf, or that the value for the regularization
factor should be sampled from a log uniform distribution.

Enforcement Rules check the feasibility of éogical pipeline
Not every generatedbgical pipelings feasible. For example,
most algorithms will fail if not all the categorical features are
encoded into numerical values or raw data (e.g., text) are not
featurized Alpine Meadowses enforcement rules to validate
logical pipelineand aborts the generation of unfeasible ones.

For execution of primitive rules, we have the probability
of to create generdbgical pipelinesr data-speci clogical
pipelines In our implementation, is set to 0.5. We only
return alogical pipelinavhen it passes all the enforcement
rules, and users have the opportunity to a ect our selection
of logical pipelinénere, for example, we can add a enforce-
ment rule to only allow forlogical pipelinewith SVMs or
logical pipelinevith no more than 10 steps. After that, we
execute parameter rules to assign reasonable distributions of
hyper-parameters for primitives of bgical pipelineBefore
applying any rule, we always check the predicate of the rule
to make sure it works for the given problem and dataset.

By applying rules to build the search space, we make the
generation oflogical pipelinglans exible. It allows to add
new rules to extend the system to support new problems,
datasets and incorporate best practises from machine learn-
ing experts. Moreover, rules also create easy-to-explain solu-
tions for better interpretability by users; especially general
logical pipelineare often easy to understand. Furthermore, it
allows to inspect which set of rules led to the creating of a
speci c logical pipeline

Finally, rules can be learned and automatically added. In
the simplest form, we add a new expansion rule for every
newly-added primitive. For example, if one adds a new fea-
ture scaler for numeric value, we add a rule that the optimizer
can use this new feature scaler for numeric values. However,
it is possible to use the rules to apriori restrict the search
space (e.g., only use this feature scaler if the classi er is
an SVM) and these rules could be learned from Kaggle and
OpenML. In our current implementation, we do not make
such restrictions and leave it up to the meta-learning algo-
rithm to make the right choices early on.

and can be dataset dependent. For example, for a prob-4 PIPELINE LOGICAL PLAN SELECTION

lem of predicting whether a player can be selected

into the hall of fame, we can run a standard scaling on

the number of seasons of the player, and a min max
scaling on the average scores of the player. Obviously,
for any given problem, there can be a large amount of
data-speci c logical pipelines

Ideally, we want to select pipelines from the search space,
which worked well in the past over similar datasets. How-
ever, occasionally we want also try out new approaches (e.g.,
an estimator that we never tried before). Furthermore, we
should probably favor solutions in the beginning, which are
more general, fast and reliable, but later specialize and use
more complex models. Finally, we can not enumerate all



Algorithm 3: NextLogicalPlan (NLP)

Input: ProblemP, DatasetD

Output: Nextlogical pipeline
1 if rand() < then /I Selection (Exploitation)
2 Compute ¢, g andcg for eachlogical pipeliné
using the history
3 LogicalPlan select dogical pipeliné with a

probability proportional to i + & K

4 else /I Random (Exploration)
5 if random() < then /I General pipeline
6 L LogicalPlan generallogical pipeline

7 else /I Data-specific pipeline

8 L LogicalPlan data-speci clogical pipeline

9 return LogicalPlan

potential pipelines; so any strategy has to use some kind of
heuristic to traverse the search space.

Obviously, there is no single right way to balance all
these objectives. In the following, we rst describe on a high
level how our selection process works, before we discuss the
individual components in more depth.

4.1 Overview

The most important di erence between building an AutoML
optimizer and query optimizer is that for ML pipelines we
can actually try and evaluate hundreds if not thousands of
pipelines, while in query optimization once a plan is executed
there is nothing left to try out. The goal of our optimizer
is to select and try out various logical plans in a way that
maximizes the probability that one of them contains the best
possiblephysical pipelineoften logical pipelinesliversity
can help. Furthermore, it is a iterative process: we can stop
the evaluation of a pipeline at any point in time and start a
new one as it deems t; something which rarely pays o in
traditional query optimization, but which is common practice
for ML. Our goal is therefore to build a function calledLP,
short for nextlogical pipeline, which we invoke to obtain
promisinglogical pipelinesMore importantly, we found that
using past history is the best predictor for future performance
and thus balancing exploitation (leveraging what worked
well in the past) and exploration (trying out new things) are
keyto nding good solutions. The high-level pseudo-code for
selecting the nextogical pipelinés shown in Algorithm 3.
Exploitation To balance the two objectives, exploitation
and exploration, we use a simple random process: with like-
lihood , we select a generdbgical pipelinewhich worked
well in the past (lines 1-4 in Algorithm 3). We evaluated
over various datasets (see Appendix A.1) and found that
= 0:5provides a good balance. We steer exploitation based

on a score measuring how promising ealdyical pipeline
is, while the score is calculated based on past experiences.
We restrict transferring past experience to genetagical
pipelinesas we found that it is less reliable for data-speci c
pipelines because of the sheer amount of options and the
sensitivity to the dataset. Thereforélpine Meadovstores
information about everyphysical pipelin@ver run including
its correspondindogical pipeline nal accuracy, execution
time, task information, and dataset characteristics. This al-
lows us, for example, to calculate the average and variance of
the accuracy and execution time of a model for a given task
and set of data characteristics. Based on this historic infor-
mation and given a new tasklpine Meadowhen creates a
score of every previously run general pipeline. This ranking
is based on the execution time. That is, in the beginning we
rank logical pipelinesigher which return quickly, whereas
later execution time might be less of a concern. Finally, its
selects randomly one of the pipelines depending on the score:
the higher the score, the higher the chance that the general
pipeline gets selected. Furthermore, in the moment we re-
ceive results on how well a selectéalyical pipelingerforms,
this information is also stored, which in turn might change
the scores for the next selection.

Exploration In contrast to ensure thaflpine Meadow
also tries new things, with the likelihood  we select dog-
ical pipelinewhich we have never run before. Here we again
randomly select with likelihood either a generalogical
pipeling or with likelihood1 adata-speci c pipeline (lines
4-9 in Algorithm 3). We evaluated over various datasets
(see Appendix A.1) and found that= 0:5 provides a good
balance. Note, that by adjustingover time, we can favor
general pipelines in the beginning and maybe later in the ex-
ecution split it evenly between general and data-dependent
pipelines, which are more specialized. For example, with
a large , we prefer generalogical pipelingsthen we are
more likely to generate general ones like the pipeline in
Figure 2. With a smaller, data-speci ¢ pipelines are more
likely chosen, while they are usually more complicated, e.g.,
run min-max scaling on one column and standard scaling
on another column, followed by a PCA. Many ways exists
on how to select the potentidbgical pipelindor which we
have no experience yet. However, what we found is that
randomly selecting a solution often performs as good as a
more advanced techniques. The reason is, that the number of
general pipelines is relatively small, so that we will anyway
try them all in a short amount of time, if is not set too
low. In contrast, the number of data-speci ¢ pipelines is very
sensitive to the data properties (much more than the general
pipelines) and the search space is so big, that we can often
not create enough samples that any advanced optimization
technique would actually pay o .



Finally it should be noted, that this selection process does  Further, [L proposes a distance function based on the
not yet tune any of the hyper-parameters and that for ev- performances over a xed set af representative pipelines
ery logical plan we usually try several hyper-parameters, as on two datasets. Formally, assume that there angipelines

explained in Section 5. 1150005 n% we use the negative Spearman's correlation coef-
) _ cient between the ranked results on both datasets (denoted

4.2 Selecting Based on History asd):

In this section we focus our attention on how we select a deDi;D;°=1 Corrsf Pi1 jor::::fPin oy

general pipeline from the past (lines 1-4 in Algorithm 3). We
modeled this selection process adfalti-Armed Bandit
(MAB) problem. We adapt the de nition of MAB presented wheref Pit 12 denotes the computed score after evaluating
in [34 to the concept oflogical pipelineselection as follows:  pipeline ; onD;.

Definition 3. Multi-Armed Bandits (MAB) Problem: For a new dataséDnew, Since we have not yet evaluated
given a set of actiors 2 A and a time-budgeT, in each  thesen reference pipelines, we can not directly compuie
roundt 2 STV However, assume there afé¢ pre-provided datasets1]

addressed this by computindt'D;; D;°forall 1 i;j N
and using regression methods to learn a functiBn RF

RF ! R, mapping from pairs of meta-featuresm':m/ >

to d:'Dj; D;°. Then with this learned model, the distance

(1) An algorithm picks an arm, 2 A

(2) Algorithm observes a reward from the choseraarm

Given that the arms reward distributiobs, are unknown
and independent, nd the algorithm that approximate the best function can be approximated as
solution with the smallest reward loss (regret)

1 D). 0 new. io
We base the selection of past pipelines on MAB as many _ de Dr_‘ew’ Di Rl_m ,-m
algorithms exists approximating the optimal solution; among  In our implementations, we builR using a random forest

the most known ardJpper Con dence Bourfd CB) Bl and - because of its robustness. _ .
greedy[39. This provides us a powerful and proven solution. Wit distance functiondc, we can get the list of appli-
Selecting With Bandits The core idea is as follow0 - cable history (i.elogical pipelineand their performances)

Init) We have one arm for every related (based on the task from similar datasets for a given datasBhew, such that
and dataset) generdxbgiceﬂ pipe"ne/ve ran in the past and the dataseD associated with the instance of hiStOfy has
we preset a score for each arm based on our past experiencedc*Dnew; D° = RM"";m° . In our implementation, we
(1 - Selection) We select an arm (i.e., logical plan) to play use = 0:3and return all pipelines below the threshold to-
(i.e., run) randomly but proportional to the score. When the ~ gether with their mean performance, performance variance
execution is done, wé2 - Store History) store the result , and averaged execution tine Each of these pipelines
in our history log and(3 - Adjust Scores) adjust the scores ~ become a bandit arm, which can then be executed.
accordingly, and then the process repeats from (1). i

They are four core problems we have to address (1) how 4-4 The Scoring Model
we select arms (i.e., pipelines) based on similarity of the task We want to balance the expected quality vs time. We there-
and data, (2) how we de ne the score, (3) how we transfer fore de ned the score for eaclogical pipelinglan as:
the past observed performance to the current dataset and
task, and (4) how we adjust the score based on the feedback = kt G k 1)
we get of actually running pipelines for the given tasks. We

will address those challenges in this order. where | and ¢ are the mean and standard deviation of

the rewards (i.e., quality of thiogical pipelinglan) andc,
is the cost, or execution time, fdogical pipeliney based

4.3 Remembering the Past . e :
_ . on the past history. Note, that we divide only the variance
To nd related history for a given task and datasets can be by the execution time and multiply it by . Here is a factor

regarded as a meta-learning probleMeta-learnind 7] tries on how much risk we want to take to try a pipeline, which
to infer learning algorithms performances from the perfor- i have a high upside (i.e., variance). We normalize the
mance of Iearr_ung algorithms across di erent da_ltasets. _Wt_e variance by the execution time as proposed B[ so the
use the same idea from meta-learning to quantify the simi- higher the potential payback, the longer we are willing to
larity between datasets1Q proposes many meta-features it for jt. However, we do not adjust the mean reward by
to capture the high-level characteristics of a dataset. Those the execution time. A pipeline which always performs good

include: number of features, the imbalance ratio of classes, S o
the number of instances, PCA statistics and information- should be selected from the beginning. However, this is only

theoretic features etc.



reasonable as (1) we assume a high parallelism (explained5 PIPELINE PHYSICAL PLAN SELECTION

later), (2) assume that some short running pipelines will

For a speci clogical pipelinethere exists possibly an in nite

always be selected, and (3) our physical execution quickly umber ofphysical pipelinewith di erent hyper-parameter

prunes out long running under performinghysical pipelines

The last step to achieve a complete solution to the logical
plan selection problem is the initialization of the scores based
on the history, which involves two main challenges: (1) we
have to identify the similar tasks and according dataset from
the past (i.e., learning from the past), and (2) normalize the
scores to the new problem so that they can actually be used
(i.e., transferring the experience).

4.5 Transferring the Experience

While it seems that we can immediately use the score for-
mula above and Il it using the values from the history, we
actually can not. Even for similar datasets, the saptgsical
pipelinemay have di erent scales of scores (since we only
consider relative rankings to quantify the similarity between
datasets). To this end, for all pipelines of a speci ¢ dataset,
we can standardize their scores to t into the same scale. For
a pipelinep and its scores, we normalize it as

S d

Shew =

where 4 and 4 are the mean and standard deviation of

con gurations. In order to to nd the best possible hyper-
parameters con guration, we uses Bayesian Optimization:

Definition 4. Bayesian Optimization (BO) : optimiza-
tion strategy that nds a global optimum poirt 2 X of
a functionf : X ! R (which analytical form is unknown),
building a surrogate mod® ; of f to guide the optimization.

In our setting,f is the unknown score function that maps
the physical pipelinesvith their respective performances.
Since the evaluation of is expensive, we use Bayesian Op-
timization, speci cally Sequential Model-Based Optimization
(SMBO), to build a model df to keep track of which are the
most promising regions in the search space.

For every selectetbgical pipelingthe optimizer probes
M ¢ using asampling policyto nd the next most promising
hyper-parameter con guration to be evaluated. In our work
we use the widely adoptedxpected improvemetil) [31]
as sampling policydue its ability to balance exploration
(search in unexplored regions) and exploitation (search in
promising regions) 16 31, 3§. We adopt the implementation
of SMBO from L4 which uses a random forest to build

scores of all pipelines on this dataset. We cluster these past the surrogate model. This random forest is trained using

iterations and their normalized scores to their corresponding
logical pipelingswhich has the same structure (DAG). Then
we compute the meanﬁ and standard deviationi for each
logical pipelin& using these normalized scores.

4.6 Learning from the Current Experience

Finally, we want to adjust the scores based on the actual

feedback by running pipelines over the actual data. Assuming
k is the just observed new mean quality ana is the old

mean quality. We then calculate the new value fér by

rst normalizing the score and by means of exponential

smoothing as:

k 0

X = + K (2)

where achieves the trade-o between current results
and history results. In ourimplementation, we set= 0:2. In
the future, we plan to make degrade over time to prioritize
information from current session. The adjustment for the
variance k and execution time is very similar.

Furthermore, all pipelines (general and data-speci c) which
get selected for execution, will become a new arm as soon a
they return a rstresult. This has the advantage, that as soon
as we try something new, it becomes part of the memaory of
our system and the bandit algorithm might select it based
on its score in the future.

past con gurations performances and estimates for a new
hyperparameter con guration , its predictive mean and
its variance 2, to compute for eactphysical pipelindts
expected improvement with respect to the current best.
Based on SMBO we credtephysical pipelinefor each
logical pipelindwe setk as 10 in our implementation), and
pushes them into a shared queue that is consumed by the
evaluation module as described next. Here, again we not
only pick the most promising hyper-parameters, but also
introduce some random candidates in physical pipeline
candidate-list to avoid to get stuck in local optimum point.
Once thosephysical pipelinesvaluation is complete, their
scores are returned and thd ¢ updated accordingly.

6 PIPELINE EVALUATION AND PRUNING

We implement the execution engine éfipine Meadows-
ing master-slave paradigm to allow scalable training and
testing ofphysical pipelineand coordinate the work using

a single producer, multiple consumer paradigm as shown
in Algorithm 1 and 2. That is, we have a queue of physical

s plans to run of sizan, which are picked up by execution

workers. Every timek slots become available, the producer
runs Algorithm 1, rst select a logical plan (Section 4), based
on it selectk physical pipeline€Section 5) and insert them
to the queue. Thosehysical pipelineare then picked up
by the workers running Algorithm 2 and executed and the



Figure 3: the more iid train samples we provide to the
physical pipeline , the closer the train and validation
error become.

Algorithm 4: Adaptive Pipeline Selection (APS)
Input: Pipelinepipeline D

Output: Score (negation of error)

SplitD into Dyrain @andDyaidation -
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process repeats. Note, that this approach only works well as
we assume that the number of workevg we have is much
larger thank, w >> k, andm is set to be larger thamw.

However, two main problems remain: (1) how do we re-
turn results early based on samples to ensure interactivity,
and (2) can we potentially stop the execution as soon as we
detect that a pipeline is not promising. It turns out, those
problems are actually related as explained next. Finally, our
execution strategy has huge potential for result reuse, which
is explained in Section A.5.

6.1 Incremental Execution and Pruning

To achieve incremental computation and return results early,
as well as reduce the computational resources spent on bad
pipelines we deviseddaptive Pipeline Selection (APS), a
bandits-based pruning strategy able to detect bad performing
pipelines, without using the whole training set.

As shown in Algorithm 4, APS gets as input a dataget
and it splits into a training datased; 4, and a validation

dataseD, gjigation - Than splits the train-set intdN smaller
samples of the same sif®l;,;:::;D 4, - For each sub-

epoch, APS generates a partial training sample as follows:

Definition5. Sub-epocha partial training phase in which
the samplegbhysical pipelingrains on a partial training sam-
ple. At sub-epodhth the partial training sample is equal to
the union of the rstD !, [D 1;D/! 4, datasplits.

, 2 o
train train

As shown from line 4 to 6, after the partial training phase,
APS computesrry aligation and update®rr, ajigation if NeC-
essary. For fast response, we will also return the score (nega-
tion of the error) to the main loop in Algorithm 2 to enable
interactivity, therefore the master can make the decision of
whether using such a pipeline trained on samples by compar-

ing its score with the current best. After this it computes the
physical pipelingartial training error and uses it as a lower

bound of the nal test error. Thus at the end each sub-epoch
i, APS applies the following halting criterion:

Halting Criterion 1. At sub-epoch, if the physical
pipeline partial training error is above the best validation
error (seen so far), terminate it.

The halting criterion is based on the facts thatr;ain <
errest and they will eventually converge if enough data is
provided (under the iid assumption). This idea is well dis-
played in gure 3 where the more data we provide to the
physical pipelinehe smaller the gap between train and test
error becomes, making the bound on the nal test error
tighter and tighter. In the appendix we provide additional
experimental evidence regarding the high correlation be-
tween train-test error, showing in the striking majority of
the tested pipelines, the train error successfully bounds the
nal validation error.

The actual execution of APS is asynchronous. At each sub-
epoch the individual threads compare theihysical pipeline
partial training and validation results against the current
best performer, and if there is an improvement, they return
it to the end user. APS saves computational resources by
spending less on bad performinghysical pipelineand more
on promising ones and returning them faster to the end-user.
This has a direct impact on the system's interactiveness

7 DISCUSSION

Pipeline Selection: By combining multi-armed bandit and
Bayesian Optimization (BO), our algorithm essentially adopts
a two-step strategy: nding the best primitives (dogical
pipeling, and then nding the best hyper-parameters (or
physical pipeling Another approach would be to take the
structure of primitives as hyper-parameters, build a giant
search space of albgical pipelinegsand use BO over this
space to nd the best pipeline. However, such a search space
is highly-heterogeneous and conditional, making it di cult



to train an accurate regression model. For example, some 8 EXPERIMENTS

hyper-parameters are speci ¢ to certain models but for BO \\e aim to answer three main questions: (1) How does our
to work all possible parameters need to be represented in system compare to other state-of-art ML auto-tune systems?
a single feature vector. Updating the search space is also (2) Are we able to return answers more quickly than other
challenging. For example, if a new primitive (e.g., a New gystems, ideally with interactive latencies? (3) How much

classi cation algorithm) is added, we cannot reuse previous g our individual design decisions in uence the system?
history anymore as the feature space has changed. Moreover,

itis very hard to nd good optima with existing optimization 8.1 Experimental Setup
methods when the search space is giant and highly complex.

Finally, it is also di cult to consider performance and
cost at the same time in the traditional BO methods, an
BO is also hardly explainable since it is essentially an opti-
mization method for black-box functions. In contrast, multi-
armed bandits provide a better intuitions what is happening.
Therefore, by combing these two methods, we can inject
context information (e.g., cost of executindysical pipeling
when solving the multi-armed bandit problem. By splitting
the whole search space into several smaller ones (ogi;

Datasets For the majority of our evaluation, we use the
d datasets provided by the DARPA D3M competition. DARPA's
program on Data Driven Discovery of Models (D3M) has the
goal to build tools to automatically build models for a given
task with and without human feedback. As part of this pro-
gram DARPA performs competitions every 6 month between
all participating teams including teams from UC Berkeley,
Stanford, MIT, NYU, etc. Every competition compares all
the systems on datasets the teams have never seen before.

cal pipeling, we can avoid more quickly useless sub search T1OWeVer, in orclier todprepare thg teams for thel compet-
spaces and build a more accurate BO model with less data t10N: DARPA released over 300 datasets; 220 classi cation

since the complexity of search space is greatly decreased. datasets, the smallest being 151 records large, the largest
- . . ) . ) being 1025000 records large, and 80 regression datasets, the
Interactivity: As Alpine Meadows used in the interactive

tting. | der t Cint it lov i smallest being 159 and the largest being 89640 records large.
setling. In order to support interactivity, we employ ime- - 0 yacords refer to either tabular structured data, text-data,
based cost models that favor fast pipelines early on, train

S e . images, and even audio- les.
plpellnes over small samples rst, prune unpromising pipe- As mentioned before, our system heavily relies on the past
lines early, and even make extensive use of caching for our

develoned i di din Section A5 experience to nd good solutions. We therefore randomly
own developed operalors as discussed In Ssection A.o. split the datasets evenly into a training and test set; we use

Novelty over auto-sklearn : Our systemis similar t@uto- the training datasets to build up history, and only report the
sklearn [11] as both use meta-learning and Bayesian Op- performance on the other half of the data.

t|m|_zat|on. Howgver, t.hefe are several key points where Building Up Experience For the training datasets and tasks,
Alp!ne Meadowi ers signi cantly from auto-skleam D . we then extensively try out various pipelines to build up past
Alpine Meaglomuses a rule-based search space, which is experience. That is for every classi cation dataset we try 66
more exten5|ble_ and supports_ more problem types tmm'_ general logical pipelines, and for every regression dataset 44
St (seg F|ggre 4). 29Ip|ne Mga@vv;ombmes multi- regression pipelines. In total we spend 30 minutes per train-
armed bandits with Bayesian Optimization (BO) to better ing dataset to build up su cient experience to be used for
explore the search space and im_proye interactivity. That s, future tasks. In total, we executed around half a milliphys-
auto-sklearn only returns one pipeline after a xed time- ical pipelineswhich would take roughly 3 days on a single

bugg?t wh|rI1eAIp|ne Mte;a(tjtoweporlt_s a _strfe am dOf?:ef;_l;]ltS"W ith machine. However, the training is embarrassingly parallel
updates whenever a better pipeline is found. 3) The "warm- and with 20 machines only takes 4 hours.

starting” techniques (i.e., the use of meta-learning) are dif- i i ]
ferent: auto-sklearn uses a few good pipelines as starting BaselinesWe compare against four baselines: (1) hand-made
points, whereasilpine Meadowses the history of the qual- solutions from DARPA: while some DARPA solutions are
ity and cost of all so far run pipelines. This allows us to state-of-the-art highly tuned solutions, others only represent
tradeo between performance and speed, leading to better reasonable solutions; a solution a relatively experienced data
performance in early stages. AJpine Meadovadopts the ~ SCientist can manually come up with in a few days; @)to-
Adaptive Pipeline Selection to prune unpromising pipelines sklearn (version 0.4): automatically searched solutions from
auto-sklearn [L1], which is the state-of-art open-source Au-

at an early stage whilauto-sklearn evaluates the pipeline X X i

on the full data, which makes it unable to produce results ML system; (3FPOTversion 0.9) : an interactive AutoML

quickly, as justi ed in Figure 6(a). system using ggnetlc programmin@9§; (4) Azure (as of
March 2019): Microsoft Azure AutoML (based dt]). The
experiments are restricted to AutoML, while feature engi-
neering and other transformation primitives are not evalu-
ated.



One thing to note is thatAzure didn't support F1 scores,
SO we use accuracy as the primary metric for classi cation
problems for the comparison betwee&lpine Meadovand
Azure. For all systems, we compute the normalized scores
betweenAlpine Meadovand the respective system.

Higher scores meaAlpine Meadovoutperforms the other
system, whereas a normalized score of 0 means the systems

Figure 4: Comparison of Alpine Meadow with di erent perform equally well. We further discretize the normalized
systems regarding supported problem/dataset types. scores into better"Alpine Meadovoutperforms the other
The percentages are calculated by the ratio of datasets system, same : scores are equal, and worgdpine Meadow
supported by the system. performs worse than the other system. Here we also only

consider the datasets the system was actually able to run and
exclude all datasets for which a system failed or didn't nd

a solution in the given time bound. The results of this exper-
iment are summarized in Figure 5. Overallpine Meadow
outperforms or equalg\zure in 70% of the datasets, 79% for
auto-sklearn and 74% fom POT

Metrics for Comparison We use F1 scores for classi cation
problems and mean squared error for regression tasks. We
further adopted thenormalized scomormag of systemA
over systenB from DARPA D?ék/l AgBtoML Competition:

normag =

Iss)

Here the scor&, (Sg) is either the F1 score or the negation
of the mean squared error, such that the higher scores are
always better. Intuitivelynormag measures how much better
systemA performs over systenB. Note, that this normalized
score is biased; the best possible score is 1 but the worst
can be gotol .We decided to use it as it DARPA's main
measure, butefrain from interpreting absolute valuekh
addition to normalized scores, we also use relative ranks to
compare di erent systems. For example, if systéngets a
F1 score of 0.8 and systdima score of 0.9, the rank is 1 and
2 for systemB andA respectivelyHere absolute values are
more meaningful, thus we will use relative ranks, as well as
discretized scores (as in Figure 5) to compare between di erent
implementationsFinally, we report an alternative unbiased
metrics and raw scores in Section A.3 & A.4.
Hardware Environment All experiments were conducted
on a single machine with a 40-core Intel(R) Xeon(R) CPU E5-
2660 v2 @ 2.20GHz and 256 GB RAM, running with Ubuntu Figure 5: Comparisons of Alpine Meadow with dif-
16.04 and Python 3.6.3. We set the number of workers to 80 ferent systems across multiple test datasets. Normal-

on this machine to utilize all hyper-threads. ized scores are computed as Alpine Meadow's score

over the other system's score. Scores are discretized
8.2 Comparison with other Systems into better: Alpine Meadow outperforms other sys-
Functionality: We rstcomparedAlpine Meadowvith auto- ~ tem, same: scores are equal, and worse : Alpine

sklearn , TPOTandAzure in terms of how many datasets ~Meadow performs worse than other system.

they can handle (shown in Figure 4). We found that none  comparison over Time Being able to provide solutions

of the other systems can handle image, audio, or collabo- yithin interactive latencies is one of the main design goals

rative Itering problems, whereasAlpine Meadoveupports o Alpine MeadowWe therefore measured the quality of

a wide range of problems. More surprisingly though, none  {he top modelsauto-sklearn and TPOTeturn over time.

of the other systems is even able to handle all structured \ye excludeddzure from this experiment since they didn't

classi cation and regression tasks. support the F1 score and only recently in April 2019 were
Performance: Next, to evaluate the performance of the  ape 1o support all datasets. We ran all systems over our 150

di erent systems over the 150 test datasets, we allocated tegt datasets for 1h again excluding failing datasets. Because
each system a time bound of 1h, and for the comparison gyto-sklearn only returns the result after a pre-de ned
of Alpine Meadovand Azure a time bound of 10 minutes.  time span we run it with various increasing time limits.



(a) Number of Successful Datasets

(b) Ranks

(c) Normalized Score

Figure 6: (a) Time to produce rst result per dataset (more early results implies better interactivity) (b) Relative
rank of the solutions averaged over all datasets (with 95% con dence bands) over time (lower is better); (c) Nor-
malized scores over the by DARPA provided solutions averaged over all datasets over time (higher is better).

Figure 7: Incremental Comparison with  auto-sklearn .
We compare all these systems together and compute
the averaged relative ranks (lower is better).

Figure 6(a) shows when the rst result was returned by
the individual systems. We note thatlpine Meadows able
to return solutions for over a third of the datasets within
1 second and for all datasets after 26 seconds with an av-

erage time per dataset of 2.76 seconds. This can be largely

contributed to the adaptive execution strategy. The curve
of auto-sklearn went down because results were collected
from runs of di erent time limits, so it found a pipeline for
some datasets in a run of short time while failed to do so in
a run of long time.

Second, in Figure 6(b) we show how the relative average
rank (over all test datasets) of the three systems evolves over
time. Lower rank is betterAlpine Meadoveonsistently holds
the best rank throughout the entire time span.

Finally, Figure 6(c) depicts the average normalized score
(over all test datasets) where we normalize the system's score
over the scores of hand-made solutions. Higher normalized
score is better. We note that on average all three systems can
beat hand-made solutions biétipine Meadowis consistently
leading especially within short time frames.

Incremental Comparison with  auto-sklearn Figure 7
shows the incremental comparison (with more techniques
employed) betweerlpine Meadovandauto-sklearn . As
we can see, if we only employ Bayesian Optimization in
Alpine Meadowthe performance is relatively close auto-
sklearn , however, each individual technique (which is either

notin auto-sklearn oremployed in di erentways)improves
the performance oAlpine Meadowincluding meta-learning,

cost-based pipeline selection and adaptive pipeline selection.

Figure 8: DARPA D3M AutoML competition (latest re-
sultin March 2018).

DARPA D3M competition As mentioned earlier, as part
of DARPA D3M's program, DARPA evaluates the auto-ml
solutions of all teams roughly every 6 month over datasets we
have never seen before and also against by DARPA created
expert solutions. Figure 8 shows the released results from
the last DARPA evaluation which was done March 2018
(DARPA did another evaluation over the summer, but still
hasn't released the results yet). In the table we anonymized
the other team names, which are from places like Stanford,
UC Berkeley, NYU, etc, and report the number of problems
the system can solve, if the system is better than the by
DARPA created expert solution, and the normalized score
to the DARPA expert solution. As it can be seen, currently
Alpine Meadoweads the competition.

8.3 Evaluation of Design choices

To evaluate our design choices, we ran our system for one
hour while enabling or disabling individual components or
optimizations. By comparing the results between with and
without individual design choices, we can have a better un-
derstanding of their bene ts. The results are shown in Fig-
ure 9.

Logical Pipeline Plan Selection We ran our system with
four di erent con gurations to justify the e ectiveness of
our cost and quality basetbgical pipelineselection tech-
niques: (1)Randorwhich always picks up dogical pipeline



(a) Logical Pipeline Plan Selection (b) Physical Pipeline

Plan Selection (c) Pipeline Pruning

Figure 9: Evaluation of Design Choices. We reported the ranks of di erent choices along with time (lower better).

randomly; (2)Quality , which only considers quality with-
out using history (cold-start) when selectiriggical pipelines
and also has some probability to randomly seledbgical
pipeline (3) Quality+History extendsQuality by using
history of similar datasets to improve the selection; (@yal-
ity+History+Cost further improvesQuality+History by
considering cost to prioritize fast pipeline.

As we can see in Figure 9(a), at the early staQeal-
ity , Quality+History and Quality+History+Cost both
outperformsRandorrit is because them all choose pipelines
with high potential of quality. By taking history into consid-
eration,Quality+History is able to nd good results after
the rst 100 seconds, however, because it doesn't consider
cost, it prefers good but probably slow pipelines, it is not
as good aQuality+History+Cost in the early stageQual-
ity+History+Cost measures quality, history and cost at
the same time, so it achieves a good tradeo between fast
response and good performance. Also, by preferring fast
pipelines, we can execute more pipelines and ne tune them,
and have a better model of the search space. Eventually, these
methods all converge to high-quality solutions, whikRan-
donis still not as good since the search space is in nite and
it is di cult to nd a good pipeline without any guidance.

Physical Pipeline Plan Generation We ran our system
with and without using Bayesian Optimization for the tuning
of hyper-parameters to justify the e ectiveness of ophys-
ical pipelineselection design choices: ®andomwhich picks
random hyper-parameters con gurations; (Bpyesian, which
uses Bayesian Optimization to nd the next promising con-
guration of hyper-parameters.

As shown in Figure 9(b), after a very short amount of time
(10 secondsBayesian achieves much better performance.
During the rst several secondfRandorand Bayesian are
pretty comparable sincBayesian essentially does random
search at rst to learn about the hyperparameter space.

Pipeline Pruning We ran our system with and without us-
ing Adaptive Pipeline Selection to evaluate the e ectiveness
of our pipeline early termination method. We compare two
modes: (INoPruning which just trains a pipeline on the
train dataset and tests it on the validation dataset without
pruning anything; (2) Adaptive Pipeline SelectiédP Swhich
prunes unpromising pipelines.

UsingAPSwe are able to to test much more pipelines, ob-
taining better solution in shorter amount of time as depicted
in Figure 9(c). However, as time goes NoPruningperfor-
mances eventually will converge tAPSnes: this is due to
a diminishing returns e ect. Testing more and more pipe-
lines leads to decreasing improvements, since phgsical
pipelinessearch space has been gradually covered.

9 RELATED WORK

AutoML Systems: Most automated ML systems focus on
automated learning algorithm selection and hyper-parameter
tuning [4, 6, 13 23 24, 36, 45 to make machine learning
curation fully automated for non-ML experts.

Arguable most related to our approach is Auto-sklearn for
which we explained the di erences in depth in Section 7.

Spark TuPAQ 36 and Hyperband P2 use variations of
multi-armed bandit (MAB) algorithm to better allocate com-
putational resources for hyper-parameter tuning. However,
their search space is limited to hyper-parameter sets for a
few (often, user speci ed) learning algorithms. The output
ML pipeline is not practical in that the real-world problems
require end-to-end pipeline curation with careful feature
engineering/selection and data transformation. One major
drawback of MAB-based approach is that the number of
arms (a unigue con guration/pipeline) explodes with the
size of the search space, and the total number of arms can
easily exceed the memory size for a full search space with
models, hyper-parameters and pre-processors.

Auto-WEKA [17, 4Q or its sister package Auto-sklearn
[11] solves the problem of learning algorithm selection and
their associated hyper-parameter optimization in a com-
bined search space. They also consider various feature se-
lection and data transformation methods to generate end-
to-end ML pipelines. Auto-WEKA uses Sequential Model-
based Algorithm Con guration (SMAC) to explore the large
search space, which is partly discrete and conditional as each
selected algorithm has a di erent set of associated hyper-
parameters. The idea is that, instead keeping track of all the
possible con gurations, the search moves towards a more
promising region based on the previous search and evalua-
tion results. Unfortunately, standalone SMAC optimization
for the large search space can still run for hours if not days.



In addition, Auto-WEKA and its search space construction
is limited to classi cation and regression problems only.

TPOT 29 is a tree-based pipeline optimization tool using
genetic programming while requiring little to no input nor
prior knowledge from the user.

Microsoft has recently introduced an AutoML tool via
Azure, based on the work o[7. They build predictive ML
pipelines combining collaborative Itering and Bayesian Op-
timization (BO). In particular they model theearch space
as probability distribution de ned by a Probabilistic Matrix
Factorization () and than use expected improvement as
acquisition function to choose the most promising pipelines.

In Alpine Meadowwe combine BO with MAB to construct

to quickly train a neural architecture model. This limits the
search spacetoa xed architectures (e.g., the depth and width

of hidden layers, skip connections). Neural networks are hard
to design from scratch, and there are many proposed solution
using similar Bayesian Optimizatiorb] 25 or Reinforcement
Learning techniques4y. In the future, we will integrate
some of the automated neural architecture design techniques
for the tasks where deep learning is known to perform best.

10 CONCLUSION AND FUTURE WORK

We have discussed a new approach to Interactive Automated
Machine Learning. This low-latency automatic selection,
based on Multi-Armed Bandits, Bayesian Optimization and

more compact (and dense) search space for Bayesian Opti-Meta-Learning theory, e ciently explores the pipeline search

mization, which results in more accurate and e cient search.
Additionally, the current implementation can work with ex-
isting (WEKA [1] and Scikit-learn BQ) ML libraries as well

space and enables domain experts to bring value to the opti-
mization process. We have testédbine Meadovon datasets
with very heterogeneous characteristics, from sample size

as custom ML primitives for more complex problems. As a to feature types. Our experiments show that when com-

result, Alpine Meadovzan support more complex problem

pared against state-of-the-art systems or expert-solutions,

types (e.g., graph matching, image and audio classi cation, Alpine Meadovgenerally generates better results in a shorter

etc.), and more importantlyAlpine Meadownds a compara-
ble ML pipeline much more e ciently and can progressively
improve the quality of the pipeline.

The interactivity aspect di erentiateg\Ipine Meadovirom

amount of time. Nevertheless, the current implementation

of Alpine Meadowvleaves some interesting open questions.
First of all, we have found that for many datasets the lack

of su cient information/signal in the data is a major rea-

other systems: we design time-based cost models preferring son for unsatisfactory performances. This issue can take the

fast pipelines early on, incremental training pipelines, and
pipeline early termination to provide better interactivity.

Human-In-The-Loop Data Analytics:  There are tools

form of a small training set, inadequate or missing features,
or simply an excess of noise. We plan to address those prob-
lems by adding external (relevant) information to the dataset,

and systems that focus on the human-in-the-loop aspect performing yvhat in jargon is calledata AugmentationFor
of data science. Hellix aims to accelerate the iterative ML €xampleAlpine Meadovalready boosted the performances

model training with responsive user feedbackd. Vizdom
[1Q provides a unique pen-and-touch interface for the user
to easily construct ML work ows and interactively re ne
the analytics/ML pipelines. Most industry cloud ML services,
such as TensorFlow?], Amazon SageMaker and Azure Ma-
chine Learning R7, fall into this category, in that they pro-
vide fully-managed environment for ML applications. Unlike

of an hand-wrist-size image regression problem using a pre-
trained ResNet neural network to extract high-level features
from the small train set (just 100 images). Given such en-
couraging results, we plan to apppata Augmentatiorto a
broader class of tasks under the form of feature extraction,
feature addition and sample enlargement . Second, we want
to explore new types of strategies for olmgical pipeline

systems, the focus is not automated end-to-end pipeline cura- @ndphysical pipelin@ptimizer. We plan to investigate a new

interface for ML work ow construction and managed com-
puting resources for the deploymentlpine Meadowargets

vant datasets with better precision. We also plan to examine
more sophisticated early termination techniques by leverag-

domain experts or users without ML expertise, and instead of NG shared statistics among the pruning threads. Finally, we

requiring the user to construct a working ML work ow with

aim to support Neural Network architecture exploration and

selected algorithms and pre-processors, the system generatescompare our system against existing frameworks.

one based on the problem description and the data.
Neural Architecture Search: Also related to our work is
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