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ABSTRACT
Statistical knowledge and domain expertise are key to extract

actionable insights out of data, yet such skills rarely coexist

together. In Machine Learning, high-quality results are only

attainable via mindful data preprocessing, hyperparameter

tuning and model selection. Domain experts are often over-

whelmed by such complexity, de-facto inhibiting a wider

adoption of ML techniques in other fields. Existing libraries

that claim to solve this problem, still require well-trained

practitioners. Those frameworks involve heavy data prepa-

ration steps and are often too slow for interactive feedback

from the user, severely limiting the scope of such systems.

In this paper we present Alpine Meadow, a first Interactive
Automated Machine Learning tool. What makes our system

unique is not only the focus on interactivity, but also the

combined systemic and algorithmic design approach; on one

handwe leverage ideas from query optimization, on the other

we devise novel selection and pruning strategies combining

cost-based Multi-Armed Bandits and Bayesian Optimization.

We evaluate our system on over 300 datasets and compare

against other AutoML tools, including the current NIPS win-

ner, as well as expert solutions. Not only is Alpine Meadow
able to significantly outperform the other AutoML systems

while — in contrast to the other systems — providing interac-

tive latencies, but also outperforms in 80% of the cases expert

solutions over data sets we have never seen before.
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1 INTRODUCTION
Truly democratizing Data Science requires a fundamental

shift in the tools we use to analyze data and build models

[18]. On one hand it requires to move away from Python-

like scripting languages, SQL and batch processing to visual

and interactive environments [10, 15, 21, 26, 33, 43]. On the

other hand, it requires to significantly reduce the required

expertise to build a machine learning pipeline. Ideally, a user

should be able to specify a high-level task (e.g., predict label

X based on my data), and the system automatically composes

a machine learning pipeline to achieve that task, including

all necessary data cleaning, feature engineering, and hyper-

parameter tuning steps.

The latter challenge is largely referred to as AutoML or

Learning to Learn and comes in various flavors. For example,

there already exists a huge amount of work on a subset of

the problem: automatic hyper-parameter tuning and model

family selection. Most noticeable, TuPAQ [35, 37], Hyper-

band [22] and the various Bayesian Optimization approaches

[11, 17, 40] all have the goal to automatically determine the

best model family (e.g., SVM vs Linear regression) or pa-

rameters for a given algorithm (e.g., step-size, kernel, etc.).

However, hyper-parameter and model selection is only one

aspect of automatically finding the best ML pipeline for a

given task. Rather an end-to-end solution also has to consider

data cleaning operation, feature engineering, and potentially

even data augmentation and transfer learning. For example,

in some cases min-max scaling and feature crosses might

help, whereas in others standard scaling and feature selec-

tion to avoid over-fitting is the better choice. In some cases

filtering out outliers and imputing missing values can have

significant benefits, whereas in others it harms the accuracy.

The closest existing solutions, which allow such end-to-

end training are probably the recent Learning to Learn ap-

proaches to find neural net (NN) architectures [3, 45]. The

https://doi.org/10.1145/3299869.3319863
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view of some �purist� is that the input of a NN should be
the raw data and that the model � if correctly tuned, for
example, by an automatic NN architecture search � should
do all the rest. However, deep learning based approaches
only work with huge amount of training data and output
a black box solution (i.e., a neural net), which is extremely
hard to interpret. While this approach might be amenable for
some scenarios, many real-world problems are rather small
in terms of data size. For example, in the current DARPA
D3M AutoML competition, only5%out of the 300 datasets
are actually larger than 10MB. We made similar observations
when working with our partners in industry and hospitals.

More importantly though, we are not aware of a single Au-
toML solution, which can provide interactive response times
to enable users to steer the computation and contribute to
the optimization with their domain knowledge. For example,
Google's Architecture search can run for weeks [3], whereas
even SciKit-Learn's Hyperparameter Tuner often take hours
before producing a �rst high-quality result. At the same
time, interactive response times are key: users should see
and understand how the system tries to �nd the best possible
AutoML pipeline and potentially contribute their knowledge.
For example, a doctor might decide to remove questionable
features from the training set after seeing that the model
starts to rely too much on it. Furthermore, as shown in inter-
active data exploration [44], interactive response times can
improve the rate at which insights are uncovered: a team
might try to build a model quickly during a meeting rather
than having a week-long back and fourth between meetings,
coding and running experiments, etc.

In this paper, we presentAlpine Meadow, a �rst interactive
AutoML tool, which is intended to be integrated into a visual
environment similar to Tableau or Vizdom [10]. However, for
this paper our focus is entirely on the ML optimizer rather
than the visual integration and user feedback. Furthermore,
we have a particular focus on small data and traditional sta-
tistical supervised machine learning pipelines, rather than
architecture search for neural nets, unsupervised learning, or
automatic data acquisition and cleaning. While the here de-
scribed optimization framework can be easily extended with
these operations, and in fact, our implementation already
does support many of them (e.g., transfer learning for neural
nets, unsupervised learning) describing and evaluating these
operation in detail is beyond the scope of this paper.

Interestingly, the problem of �nding the best possible ML
pipeline for a given task (e.g., classify X) has many common-
alities with query optimization as already pointed out in
the MLBase vision paper [19]. It requires to explore a po-
tentially enormous search space and select the best possible
plan (i.e., pipeline). We therefore borrow many ideas from
query optimization including rule-based search-space cre-
ation. Yet, what di�erentiates our approach the most from

other AutoML tools is the joint algorithmic and system-based
approach to ML auto-tuning, the focus on interpretable ML
pipelines, and our goal to produce a high quality results in
less than a few seconds.

In summary, our end-to-end interactive and automated
machine learning system makes the following contributions:

� We present a novel architecture of an AutoML system
with interactive responses.

� We show how rule-based opimization, can be com-
bined with multi-armed bandits, Bayesian optimiza-
tion and meta-learning to �nd more e�ciently the best
ML pipeline for a given problem. Here, the novelty lies
in the fact how we combine the various techniques
into a single system.

� We devise an adaptive pipeline selection algorithm to
prune unpromising pipelines early by comparing train
and validation errors on increasingly larger sample
sizes of training instances.

� We show in our evaluation thatAlpine Meadowsignif-
icantly outperforms other AutoML systems while � in
contrast to the other systems � provides interactive
latencies on over 300 real world datasets. Furthermore,
Alpine Meadowoutperforms expert solutions in 80%
of the cases for datasets we have never seen before.
Finally, as of April 2019Alpine Meadowwas ranked
�rst in DARPA performed D3M Automatic Machine
Learning competition.

The remainder of this paper proceeds as follows. In Sec-
tion 2 we provide a system overview, whereas Section 3 to
7 discuss the di�erent auto-tuning steps. We evaluate our
system and compare with baselines and other systems in
Section 8, summarize related works in Section 9, and �nally
conclude in Section 10.

2 OVERVIEW
In this section we give an overview ofAlpine Meadowand
introduce the main terminology.

2.1 System Architecture
Alpine Meadowis part ofNorthstar[18], a system for Interac-
tive Data Science where domain experts interact with data
through an interactive visual environment calledVizdom[10].
In this environment, a prediction problem can be speci�ed
through drag and drop gestures and can be as simple as
binary classi�cation (i.e. spam detection) or as complex as
graph community detection.

Based on such a problem speci�cation,Alpine Meadowwill
automatically begin to search and progressively return ma-
chine learning pipelines to the end-user. The system gradu-
ally optimizes over the search space, and periodically returns
best-so-far pipelines to the end-user. Unlike other AutoML



systems, we envision our system to be used in an interactive
setting, which allows users to constrain and re�ne a problem,
early stop a search and embed their domain knowledge.

Figure 1: Optimization loop: (1) search space model,
(2) logical-plan selection, (3) physical-plan selection,
(4) pipelines evaluation and pruning, (5) search space
model update, (6) data augmentation

2.2 The Optimization Process
The core design idea is to solve ML problems by emulating
the decision-making process of an experienced data scientist.
How does an experienced data scientist approach a prob-
lem: First, she would inspect the data and, based on her
experience, make high-level decisions about feature scaling,
embeddings, data cleaning, etc. The key is to start out simple.
Furthermore, the data scientist would probably use a reliable
and often successful model family, such as random forests,
and check for the most common mistakes (e.g., imbalance of
labels or duplicate label columns). Finally, the data scientist
would setup a simple optimization strategy for the primi-
tives' hyper-paremeters and if the data is large, probably
�rst try to build a model over a sample of the data. Then,
after initial results, the data scientist will start to modify the
pipeline by adding more complex processing steps, changing
the model family, adding/removing features, increasing the
sample size and so on. It is an iterative and incremental pro-
cess. It is further a process with memory as the data scientist
remembers, what worked well over what data in the past.

This process is exactly what we aimed to mirror and au-
tomate in our system. We therefore broke our architecture
up into steps that data scientists perform, which has the ad-
vantage to make the problem more tractable than treating
it as optimization problem on a gigantic and heterogeneous
space. Figure 1 shows the individual steps inAlpine Meadow:

(1) Search Space:The system �rst creates a search space
of logical pipelines. We de�ne alogical pipelineplan as:

Definition 1. Logical Pipeline Plan: a Directed Acyclic
Graph (DAG) of primitives, with their hyper-parameters' do-
main speci�cation (not �xed).

We create the logical plans through applying rules, sim-
ilar to how SQL transformation rules can create a space of

equivalent logical query plans. For example, a rule might
say that all categorical features should be one-hot encoded,
or that numerical features can be scaled. Also similar to
logical query plans,logical pipelinesdo not yet contain any
details about how the pipeline should be executed (e.g., no
hyper-parameters are set).

This step is best compared to asking the data scientist: "What
can I do to predict X based on my data" and she lists a whole
bunch of options, e.g., di�erent ways of encoding categorical
features, scaling numerical features and feature selection, and
di�erent models for prediction.

Figure 2: An example pipeline. The boxes in red show
�xed hyper-parameters and they compose a physical
pipeline plan with this DAG. While the boxes in green
give distribution of hyper-parameters and they com-
pose alogical pipeline with this DAG.

(2) Logical Pipeline Selection: Similar to query opti-
mization the space of all possiblelogical pipelinescan be
huge. We therefore select the most promisinglogical pipelines
based on a cost/quality model learned from past experiments
to favor fast pipelines to provide better interactivity.

This step is best compared to asking the data scientist �What
should I try �rst�. A data scientist will provide you with a few
good general options after taking a quick look at your data.
For example, she might say �Try to normalize all features and
use a boosted decision tree as a start� or she might say, �Given
the data size, don't even try neural nets�.

(3) Physical Pipeline Selection: After selecting thelog-
ical pipelines, they are instantiated intok physical pipeline
plans, which are de�ned as:



Algorithm 1: PipelineSelection
Input: ProblemP, DatasetD , Q

1 while Q.has_spacedo
2 lp  NextLogicalPipeline(P, D )
3 pps NextPhysicalPipelines(lp,k)
4 Q.putAll(pps)

Algorithm 2: PipelineExecution
Input: ProblemP, DatasetD , Q, scorebest
Output: Pipeline Found

1 while !Q.emptydo
2 p  Q .take()
3 for score AdaptivePipelineSelection(p,D ) do
4 if score >scorebest then
5 scorebest  score
6 yield pipelinebest

7 Update models using running history of pipeline;

Definition 2. Physical Pipeline Plan: an end-to-end
solution to a user-de�ned problem, represented as Directed
Acyclic Graph (DAG) of primitives with �xed hyper-parameters.

An example of physical pipeline plan is shown in Figure 2.
Physical pipelinesare generated from alogical pipelinevia
Bayesian optimization. Eachlogical pipelinehyper-parameters
space has an associated performance-model used to �nd
promising con�guration. If alogical pipelinehas never been
used, there is not any model associated with it, hence we
start out using default or random con�gurations. As soon
as the �rst results are collected, our system starts to select
the next hyper-parameters based on Bayesian-Optimization.
The logical and physical plans are a vague analogy to the
query optimization, however,physical pipelineplans don't
include any implementation details as the physical plans in
query optimization do.

This step is best compared to turning the general pipelines
into actual Python code.

(4) Incremental Execution: For large datasets, it is of-
ten bene�cial to run aphysical pipelineon a smaller sample
�rst, and then if the results look promising try it on a larger
portion of the dataset. We therefore, treat every physical
plan as a bandit arm, from which every pull increases the
sample size. The bandit mechanism together with the sam-
pling guarantees that we focus our attention on promising
pipelines early on and get good results quickly, which we
can stream back to the user with short response time.

This is similar to a data scientist �rst building a model over
a sample of the data before using all available data especially
when the data is big.

(5) Iterative Re�nement: By evaluating di�erentphysi-
cal pipelines, we gathered some experience over the current
dataset that we can use to update our cost- and quality-model
to selectlogical pipelineand the Bayesian-Optimization model
for selectingphysical pipeline.

This step can be best compared to the iterative re�nements
that a data scientist performs after that she observes the results
from a tested model.

(6) Data Augmentation: A more recent step that we
started adding to the process is automatic data augmentation.
That is, as part of step (1) we now also consider, if we can use
already trained models as starting solutions or to create new
features. For example, if the goal is to train a classi�er based
on only 100 training images, the most promising solution is
to actually transfer an existing model or use existing mod-
els to create more powerful features for the given images.
Currently, we only use this approach for image tasks but
with very remarkable results. While not discussed in detail
in this paper, we brie�y outline that our system can easily
be extended to support this.

As we showed,Alpine Meadowtries on a high-level to
emulate the steps a data scientist takes. Furthermore, as the
distinction between alogical pipelineandphysical pipelineal-
ready shows, our optimizer has many similarities with tradi-
tional query optimization and a lot of optimization potential
exists as we discuss in the remaining sections. It should also
be noted, that this is not the only way to build an interactive
end-to-end AutoML tool and in Section 7 we discuss alterna-
tive designs. However, like the original Selinger paper [32]
on query optimization, it is a start, and will hopefully result
in various follow up work.

2.3 Algorithmic Walkthrough
Algorithm 1 and 2 provide a simpli�ed outline of the entire
optimization process following the previous described steps
(minus the augmentation). First, we create a masterPipeline
Selectionthread running Algorithm 1, and severalPipeline
Executionworker threads. The two are connected through a
�xed size execution queueQ. Every time the queue has free
space, thePipeline Selectionthread tries to �nd a promising
logical pipeline, and based on it createsk physical pipelines
to execute, which it then adds to the execution queue.

Whereas the worker threads take up aphysical pipeline
from the queue and execute it using our sample-based execu-
tion strategy (line 3 in Algorithm 1). Note, that for a single
physical pipelinewe receive more than one scores, as we
incrementally train and test the sampled pipelines. If the
score for a pipeline is higher than the so far best seen score,
we report it to the user (line 4-7) and update our history of
pipeline runs to make better decisions in the future (line 7).



3 RULE-BASED SEARCH SPACE
Data scientists rely on their expertise and past experience
to solve challenging problems. We imitated this process by
adapting the idea of rule-based search space de�nition com-
monly used in database optimizers to our AutoML system.
Rules in our system encapsulate best practices similar to
those data scientists might use. Given the de�nitions in the
previous section we propose three kinds of rules:primitive,
parameterandenforcement rules.

Primitive Rules add new primitives to the search space
dependent on the task (e.g., using di�erent algorithms for
classi�cation, regression, recommendation, or graph-related
problems) or the dataset schema (e.g., applying one-hot en-
coding for categorical features). Until now, we have inte-
grated close to hundred primitive rules derived from winning
Kaggle competitions, expert solutions to problems provided
by DARPA, and interviews with data scientists. These rules,
for example, include things like encoding categorical fea-
tures, scaling numerical values, imputation of empty values,
selection of features, choosing models for di�erent problem
types, extracting features from raw text and images, building
the graphs for graph datasets etc. Primitive rules are used to
build and rewritelogical pipelines. Applying a rule can either
start a newlogical pipelineor extend existing ones by adding
primitives that operate on all or a subset of columns. What
makes our approach unique is that we create two types of
logical pipelines:

� General logical pipeline : General pipelines always
use primitives over all features if they share the same
semantic type, and only use one primitive type per
category. For example, a general pipeline would en-
code that we run a one hot encoder on allcategorical
columns, a min-max scaler on allnumericalcolumns,
then do an SVD on the concatenation of these two
results, and feed them into a SVM. A general pipeline
would thus not use two di�erent encodings for the
same numeric feature, or �rst apply min max scaling
followed by standard scaling. This approach allows
us to severely restrict the number of generallogical
pipelineand also make the transfer learning of pipe-
lines between di�erent datasets possible.

� Data-speci�c logical pipeline : These arelogical pipe-
lineswith no restrictions on the primitive compositions
and can be dataset dependent. For example, for a prob-
lem of predicting whether a player can be selected
into the hall of fame, we can run a standard scaling on
the number of seasons of the player, and a min max
scaling on the average scores of the player. Obviously,
for any given problem, there can be a large amount of
data-speci�c logical pipelines.

Parameter Rules generate reasonable distributions for hyper-
parameters of primitives. For example, a rule might be that
the set of possible values for the kernel of a SVM arelinear,
poly, sigmoidor rbf, or that the value for the regularization
factor � should be sampled from a log uniform distribution.

Enforcement Rules check the feasibility of alogical pipeline.
Not every generatedlogical pipelineis feasible. For example,
most algorithms will fail if not all the categorical features are
encoded into numerical values or raw data (e.g., text) are not
featurized.Alpine Meadowuses enforcement rules to validate
logical pipelineand aborts the generation of unfeasible ones.

For execution of primitive rules, we have the probability
of 
 to create generallogical pipelinesor data-speci�clogical
pipelines. In our implementation,
 is set to 0.5. We only
return a logical pipelinewhen it passes all the enforcement
rules, and users have the opportunity to a�ect our selection
of logical pipelinehere, for example, we can add a enforce-
ment rule to only allow forlogical pipelinewith SVMs or
logical pipelinewith no more than 10 steps. After that, we
execute parameter rules to assign reasonable distributions of
hyper-parameters for primitives of alogical pipeline. Before
applying any rule, we always check the predicate of the rule
to make sure it works for the given problem and dataset.

By applying rules to build the search space, we make the
generation oflogical pipelineplans �exible. It allows to add
new rules to extend the system to support new problems,
datasets and incorporate best practises from machine learn-
ing experts. Moreover, rules also create easy-to-explain solu-
tions for better interpretability by users; especially general
logical pipelineare often easy to understand. Furthermore, it
allows to inspect which set of rules led to the creating of a
speci�c logical pipeline.

Finally, rules can be learned and automatically added. In
the simplest form, we add a new expansion rule for every
newly-added primitive. For example, if one adds a new fea-
ture scaler for numeric value, we add a rule that the optimizer
can use this new feature scaler for numeric values. However,
it is possible to use the rules to apriori restrict the search
space (e.g., only use this feature scaler if the classi�er is
an SVM) and these rules could be learned from Kaggle and
OpenML. In our current implementation, we do not make
such restrictions and leave it up to the meta-learning algo-
rithm to make the right choices early on.

4 PIPELINE LOGICAL PLAN SELECTION
Ideally, we want to select pipelines from the search space,
which worked well in the past over similar datasets. How-
ever, occasionally we want also try out new approaches (e.g.,
an estimator that we never tried before). Furthermore, we
should probably favor solutions in the beginning, which are
more general, fast and reliable, but later specialize and use
more complex models. Finally, we can not enumerate all



Algorithm 3: NextLogicalPlan (NLP)
Input: ProblemP, DatasetD
Output: Next logical pipeline

1 if rand() <� then // Selection (Exploitation)
2 Compute� k , � k andck for eachlogical pipelinek

using the history
3 LogicalPlan select alogical pipelinek with a

probability proportional to� k + �
ck

� � k

4 else // Random (Exploration)
5 if random() <
 then // General pipeline
6 LogicalPlan generallogical pipeline

7 else // Data-specific pipeline
8 LogicalPlan data-speci�clogical pipeline

9 return LogicalPlan

potential pipelines; so any strategy has to use some kind of
heuristic to traverse the search space.

Obviously, there is no single �right� way to balance all
these objectives. In the following, we �rst describe on a high
level how our selection process works, before we discuss the
individual components in more depth.

4.1 Overview
The most important di�erence between building an AutoML
optimizer and query optimizer is that for ML pipelines we
can actually try and evaluate hundreds if not thousands of
pipelines, while in query optimization once a plan is executed
there is nothing left to try out. The goal of our optimizer
is to select and try out various logical plans in a way that
maximizes the probability that one of them contains the best
possiblephysical pipeline: often logical pipelinesdiversity
can help. Furthermore, it is a iterative process: we can stop
the evaluation of a pipeline at any point in time and start a
new one as it deems �t; something which rarely pays o� in
traditional query optimization, but which is common practice
for ML. Our goal is therefore to build a function calledNLP,
short for next logical pipeline, which we invoke to obtain
promisinglogical pipelines. More importantly, we found that
using past history is the best predictor for future performance
and thus balancing exploitation (leveraging what worked
well in the past) and exploration (trying out new things) are
key to �nding good solutions. The high-level pseudo-code for
selecting the nextlogical pipelineis shown in Algorithm 3.

Exploitation To balance the two objectives, exploitation
and exploration, we use a simple random process: with like-
lihood � , we select a generallogical pipeline, which worked
well in the past (lines 1-4 in Algorithm 3). We evaluated
� over various datasets (see Appendix A.1) and found that
� = 0:5provides a good balance. We steer exploitation based

on a score measuring how promising eachlogical pipeline
is, while the score is calculated based on past experiences.
We restrict transferring past experience to generallogical
pipelinesas we found that it is less reliable for data-speci�c
pipelines because of the sheer amount of options and the
sensitivity to the dataset. Therefore,Alpine Meadowstores
information about everyphysical pipelineever run including
its correspondinglogical pipeline, �nal accuracy, execution
time, task information, and dataset characteristics. This al-
lows us, for example, to calculate the average and variance of
the accuracy and execution time of a model for a given task
and set of data characteristics. Based on this historic infor-
mation and given a new task,Alpine Meadowthen creates a
score of every previously run general pipeline. This ranking
is based on the execution time. That is, in the beginning we
rank logical pipelineshigher which return quickly, whereas
later execution time might be less of a concern. Finally, its
selects randomly one of the pipelines depending on the score:
the higher the score, the higher the chance that the general
pipeline gets selected. Furthermore, in the moment we re-
ceive results on how well a selectedlogical pipelineperforms,
this information is also stored, which in turn might change
the scores for the next selection.

Exploration In contrast to ensure thatAlpine Meadow
also tries new things, with the likelihood1� � we select alog-
ical pipelinewhich we have never run before. Here we again
randomly select with likelihood
 either a generallogical
pipeline, or with likelihood1� 
 a data-speci�c pipeline (lines
4-9 in Algorithm 3). We evaluated
 over various datasets
(see Appendix A.1) and found that
 = 0:5 provides a good
balance. Note, that by adjusting
 over time, we can favor
general pipelines in the beginning and maybe later in the ex-
ecution split it evenly between general and data-dependent
pipelines, which are more specialized. For example, with
a large
 , we prefer generallogical pipelines, then we are
more likely to generate general ones like the pipeline in
Figure 2. With a smaller
 , data-speci�c pipelines are more
likely chosen, while they are usually more complicated, e.g.,
run min-max scaling on one column and standard scaling
on another column, followed by a PCA. Many ways exists
on how to select the potentiallogical pipelinefor which we
have no experience yet. However, what we found is that
randomly selecting a solution often performs as good as a
more advanced techniques. The reason is, that the number of
general pipelines is relatively small, so that we will anyway
try them all in a short amount of time, if
 is not set too
low. In contrast, the number of data-speci�c pipelines is very
sensitive to the data properties (much more than the general
pipelines) and the search space is so big, that we can often
not create enough samples that any advanced optimization
technique would actually pay o�.



Finally it should be noted, that this selection process does
not yet tune any of the hyper-parameters and that for ev-
ery logical plan we usually try several hyper-parameters, as
explained in Section 5.

4.2 Selecting Based on History
In this section we focus our attention on how we select a
general pipeline from the past (lines 1-4 in Algorithm 3). We
modeled this selection process as aMulti-Armed Bandit
(MAB) problem. We adapt the de�nition of MAB presented
in [34] to the concept oflogical pipelineselection as follows:

Definition 3. Multi-Armed Bandits (MAB) Problem:
given a set of actionsa 2 A and a time-budgetT, in each
roundt 2 »T¼:

(1) An algorithm picks an armat 2 A
(2) Algorithm observes a reward from the chosen armat

Given that the arms reward distributionsD a are unknown
and independent, �nd the algorithm that approximate the best
solution with the smallest reward loss (regret)

We base the selection of past pipelines on MAB as many
algorithms exists approximating the optimal solution; among
the most known areUpper Con�dence Bound(UCB) [8] and� -
greedy[39]. This provides us a powerful and proven solution.

Selecting With Bandits The core idea is as follows:(0 -
Init) We have one arm for every related (based on the task
and dataset) generallogical pipelinewe ran in the past and
we preset a score for each arm based on our past experience.
(1 - Selection) We select an arm (i.e., logical plan) to play
(i.e., run) randomly but proportional to the score. When the
execution is done, we(2 - Store History) store the result
in our history log and(3 - Adjust Scores) adjust the scores
accordingly, and then the process repeats from (1).

They are four core problems we have to address (1) how
we select arms (i.e., pipelines) based on similarity of the task
and data, (2) how we de�ne the score, (3) how we transfer
the past observed performance to the current dataset and
task, and (4) how we adjust the score based on the feedback
we get of actually running pipelines for the given tasks. We
will address those challenges in this order.

4.3 Remembering the Past
To �nd related history for a given task and datasets can be
regarded as a meta-learning problem.Meta-learning[7] tries
to infer learning algorithms performances from the perfor-
mance of learning algorithms across di�erent datasets. We
use the same idea from meta-learning to quantify the simi-
larity between datasets. [12] proposes many meta-features
to capture the high-level characteristics of a dataset. Those
include: number of features, the imbalance ratio of classes,
the number of instances, PCA statistics and information-
theoretic features etc.

Further, [12] proposes a distance function based on the
performances over a �xed set ofn representative pipelines
on two datasets. Formally, assume that there aren pipelines
¹� 1; : : : ;� nº, we use the negative Spearman's correlation coef-
�cient between the ranked results on both datasets (denoted
asdc):

dc¹Di ;Dj º = 1 � Corr¹»f Di ¹� 1º; : : : ; f Di ¹� nº¼;

»f D j ¹� 1º; : : : ; f D j ¹� nº¼º

where f Di ¹� 1º denotes the computed score after evaluating
pipeline� 1 on Di .

For a new datasetDnew, since we have not yet evaluated
thesen reference pipelines, we can not directly computedc.
However, assume there areN pre-provided datasets, [12]
addressed this by computingdc¹Di ;Dj º for all 1 � i ; j � N
and using regression methods to learn a functionR : RF �
RF ! R, mapping from pairs of meta-features< mi ;mj >
to dc¹Di ;Dj º. Then with this learned model, the distance
function can be approximated as

dc¹Dnew;Di º � R¹mnew;mi º

In our implementations, we builtR using a random forest
because of its robustness.

With distance functiondc, we can get the list of appli-
cable history (i.e.,logical pipelinesand their performances)
from similar datasets for a given datasetDnew, such that
the datasetD associated with the instance of history has
dc¹Dnew;Dº = R¹mnew;mº � � . In our implementation, we
use� = 0:3 and return all pipelines below the threshold to-
gether with their mean performance� , performance variance
� , and averaged execution timec. Each of these pipelines
become a bandit arm, which can then be executed.

4.4 The Scoring Model
We want to balance the expected quality vs time. We there-
fore de�ned the score for eachlogical pipelineplan as:

sk = � k +
�
ck

� � k (1)

where� k and� k are the mean and standard deviation of
the rewards (i.e., quality of thelogical pipelineplan) andck
is the cost, or execution time, forlogical pipelineak based
on the past history. Note, that we divide only the variance
by the execution time and multiply it by� . Here� is a factor
on how much risk we want to take to try a pipeline, which
might have a high upside (i.e., variance). We normalize the
variance by the execution time as proposed in [23]; so the
higher the potential payback, the longer we are willing to
wait for it. However, we do not adjust the mean reward by
the execution time. A pipeline which always performs good
should be selected from the beginning. However, this is only



reasonable as (1) we assume a high parallelism (explained
later), (2) assume that some short running pipelines will
always be selected, and (3) our physical execution quickly
prunes out long running under performingphysical pipelines.

The last step to achieve a complete solution to the logical
plan selection problem is the initialization of the scores based
on the history, which involves two main challenges: (1) we
have to identify the similar tasks and according dataset from
the past (i.e., learning from the past), and (2) normalize the
scores to the new problem so that they can actually be used
(i.e., transferring the experience).

4.5 Transferring the Experience
While it seems that we can immediately use the score for-
mula above and �ll it using the values from the history, we
actually can not. Even for similar datasets, the samephysical
pipelinemay have di�erent scales of scores (since we only
consider relative rankings to quantify the similarity between
datasets). To this end, for all pipelines of a speci�c dataset,
we can standardize their scores to �t into the same scale. For
a pipelinep and its scores, we normalize it as

snew =
s � � d

� d

where � d and � d are the mean and standard deviation of
scores of all pipelines on this dataset. We cluster these past
iterations and their normalized scores to their corresponding
logical pipelines, which has the same structure (DAG). Then
we compute the mean�

0

k and standard deviation�
0

k for each
logical pipelinek using these normalized scores.

4.6 Learning from the Current Experience
Finally, we want to adjust the scores based on the actual
feedback by running pipelines over the actual data. Assuming
� k is the just observed new mean quality and�

0

k is the old
mean quality. We then calculate the new value for�̂ k by
�rst normalizing the score and by means of exponential
smoothing as:

�̂ k =
� k � �

�
+ � � �

0

k (2)

where� achieves the trade-o� between current results
and history results. In our implementation, we set� = 0:2. In
the future, we plan to make� degrade over time to prioritize
information from current session. The adjustment for the
variance� k and execution timeck is very similar.

Furthermore, all pipelines (general and data-speci�c) which
get selected for execution, will become a new arm as soon as
they return a �rst result. This has the advantage, that as soon
as we try something new, it becomes part of the memory of
our system and the bandit algorithm might select it based
on its score in the future.

5 PIPELINE PHYSICAL PLAN SELECTION
For a speci�clogical pipeline, there exists possibly an in�nite
number ofphysical pipelineswith di�erent hyper-parameter
con�gurations. In order to to �nd the best possible hyper-
parameters con�guration, we uses Bayesian Optimization:

Definition 4. Bayesian Optimization (BO) : optimiza-
tion strategy that �nds a global optimum pointx � 2 X of
a functionf : X ! R (which analytical form is unknown),
building a surrogate modelM f of f to guide the optimization.

In our setting,f is the unknown score function that maps
the physical pipelineswith their respective performances.
Since the evaluation off is expensive, we use Bayesian Op-
timization, speci�callySequential Model-Based Optimization
(SMBO), to build a model off to keep track of which are the
most promising regions in the search space.

For every selectedlogical pipeline, the optimizer probes
M f using asampling policyto �nd the next most promising
hyper-parameter con�guration to be evaluated. In our work
we use the widely adoptedexpected improvement(EI) [31]
as sampling policy, due its ability to balance exploration
(search in unexplored regions) and exploitation (search in
promising regions) [16,31,38]. We adopt the implementation
of SMBO from [14] which uses a random forest to build
the surrogate model. This random forest is trained using
past con�gurations performances and estimates for a new
hyperparameter con�guration� , its predictive mean� � and
its variance� 2

� , to compute for eachphysical pipelineits
expected improvement with respect to the current best.

Based on SMBO we createk physical pipelinesfor each
logical pipeline(we setk as 10 in our implementation), and
pushes them into a shared queue that is consumed by the
evaluation module as described next. Here, again we not
only pick the most promising hyper-parameters, but also
introduce some random candidates in itsphysical pipeline
candidate-list to avoid to get stuck in local optimum point.
Once thosephysical pipelinesevaluation is complete, their
scores are returned and theM f updated accordingly.

6 PIPELINE EVALUATION AND PRUNING
We implement the execution engine ofAlpine Meadowus-
ing master-slave paradigm to allow scalable training and
testing ofphysical pipelinesand coordinate the work using
a single producer, multiple consumer paradigm as shown
in Algorithm 1 and 2. That is, we have a queue of physical
plans to run of sizem, which are picked up by execution
workers. Every timek slots become available, the producer
runs Algorithm 1, �rst select a logical plan (Section 4), based
on it selectk physical pipelines(Section 5) and insert them
to the queue. Thosephysical pipelinesare then picked up
by the workers running Algorithm 2 and executed and the



Figure 3: the more iid train samples we provide to the
physical pipeline , the closer the train and validation
error become.

Algorithm 4: Adaptive Pipeline Selection (APS)
Input: Pipelinepipeline, D
Output: Score (negation of error)

1 Split D into D t rain andDv al idat ion .
2 Split D t rain into equal-sizedD 1

train ; : : : ;D N
train ;

3 foreach i 2 1: : :N do
4 Train pipelineon D1:::i

t rain ;
5 errv al idat ion  Testpipelineon Dv al idat ion ;
6 if errv al idat ion < errbest then
7 errbest  errv al idat ion ;

8 yield -errv al idat ion ;
9 errt rain  Testpipelineon D1:::i

t rain ;
10 if errt rain > errbest then
11 return -inf

12 return -errv al idat ion

process repeats. Note, that this approach only works well as
we assume that the number of workersw we have is much
larger thank, w >> k, andm is set to be larger thanw.

However, two main problems remain: (1) how do we re-
turn results early based on samples to ensure interactivity,
and (2) can we potentially stop the execution as soon as we
detect that a pipeline is not promising. It turns out, those
problems are actually related as explained next. Finally, our
execution strategy has huge potential for result reuse, which
is explained in Section A.5.

6.1 Incremental Execution and Pruning
To achieve incremental computation and return results early,
as well as reduce the computational resources spent on bad
pipelines we devisedAdaptive Pipeline Selection (APS), a
bandits-based pruning strategy able to detect bad performing
pipelines, without using the whole training set.

As shown in Algorithm 4, APS gets as input a datasetD ,
and it splits into a training datasetDt rain and a validation

datasetDv al idat ion . Than splits the train-set intoN smaller
samples of the same sizeD 1

train ; : : : ;D N
train . For each sub-

epoch, APS generates a partial training sample as follows:

Definition 5. Sub-epoch:a partial training phase in which
the sampledphysical pipelinetrains on a partial training sam-
ple. At sub-epochi -th the partial training sample is equal to
the union of the �rstD 1

train [D 2
train [ : : : ;D i

t rain data splits.

As shown from line 4 to 6, after the partial training phase,
APS computeserrv al idat ion and updateserrv al idat ion if nec-
essary. For fast response, we will also return the score (nega-
tion of the error) to the main loop in Algorithm 2 to enable
interactivity, therefore the master can make the decision of
whether using such a pipeline trained on samples by compar-
ing its score with the current best. After this it computes the
physical pipelinepartial training error and uses it as a lower
bound of the �nal test error. Thus at the end each sub-epoch
i , APS applies the following halting criterion:

Halting Criterion 1. At sub-epochi , if the physical
pipeline partial training error is above the best validation
error (seen so far), terminate it.

The halting criterion is based on the facts thaterrt rain <
errtest and they will eventually converge if enough data is
provided (under the iid assumption). This idea is well dis-
played in �gure 3 where the more data we provide to the
physical pipelinethe smaller the gap between train and test
error becomes, making the bound on the �nal test error
tighter and tighter. In the appendix we provide additional
experimental evidence regarding the high correlation be-
tween train-test error, showing in the striking majority of
the tested pipelines, the train error successfully bounds the
�nal validation error.

The actual execution of APS is asynchronous. At each sub-
epoch the individual threads compare theirphysical pipeline
partial training and validation results against the current
best performer, and if there is an improvement, they return
it to the end user. APS saves computational resources by
spending less on bad performingphysical pipelinesand more
on promising ones and returning them faster to the end-user.
This has a direct impact on the system's interactiveness.

7 DISCUSSION

Pipeline Selection: By combining multi-armed bandit and
Bayesian Optimization (BO), our algorithm essentially adopts
a two-step strategy: �nding the best primitives (orlogical
pipeline), and then �nding the best hyper-parameters (or
physical pipeline). Another approach would be to take the
structure of primitives as hyper-parameters, build a giant
search space of alllogical pipelines, and use BO over this
space to �nd the best pipeline. However, such a search space
is highly-heterogeneous and conditional, making it di�cult



to train an accurate regression model. For example, some
hyper-parameters are speci�c to certain models but for BO
to work all possible parameters need to be represented in
a single feature vector. Updating the search space is also
challenging. For example, if a new primitive (e.g., a new
classi�cation algorithm) is added, we cannot reuse previous
history anymore as the feature space has changed. Moreover,
it is very hard to �nd good optima with existing optimization
methods when the search space is giant and highly complex.

Finally, it is also di�cult to consider performance and
cost at the same time in the traditional BO methods, and
BO is also hardly explainable since it is essentially an opti-
mization method for black-box functions. In contrast, multi-
armed bandits provide a better intuitions what is happening.
Therefore, by combing these two methods, we can inject
context information (e.g., cost of executingphysical pipeline)
when solving the multi-armed bandit problem. By splitting
the whole search space into several smaller ones (i.e.,logi-
cal pipeline), we can avoid more quickly useless sub search
spaces and build a more accurate BO model with less data
since the complexity of search space is greatly decreased.

Interactivity: As Alpine Meadowis used in the interactive
setting. In order to support interactivity, we employ time-
based cost models that favor fast pipelines early on, train
pipelines over small samples �rst, prune unpromising pipe-
lines early, and even make extensive use of caching for our
own developed operators as discussed in Section A.5.

Novelty over auto-sklearn : Our system is similar toauto-
sklearn [11] as both use meta-learning and Bayesian Op-
timization. However, there are several key points where
Alpine Meadowdi�ers signi�cantly from auto-sklearn : 1)
Alpine Meadowuses a rule-based search space, which is
more extensible and supports more problem types thanauto-
sklearn (see Figure 4). 2)Alpine Meadowcombines multi-
armed bandits with Bayesian Optimization (BO) to better
explore the search space and improve interactivity. That is,
auto-sklearn only returns one pipeline after a �xed time-
budget whileAlpine Meadowreports a stream of results with
updates whenever a better pipeline is found. 3) The "warm-
starting" techniques (i.e., the use of meta-learning) are dif-
ferent:auto-sklearn uses a few good pipelines as starting
points, whereasAlpine Meadowuses the history of the qual-
ity and cost of all so far run pipelines. This allows us to
tradeo� between performance and speed, leading to better
performance in early stages. 4)Alpine Meadowadopts the
Adaptive Pipeline Selection to prune unpromising pipelines
at an early stage whileauto-sklearn evaluates the pipeline
on the full data, which makes it unable to produce results
quickly, as justi�ed in Figure 6(a).

8 EXPERIMENTS
We aim to answer three main questions: (1) How does our
system compare to other state-of-art ML auto-tune systems?
(2) Are we able to return answers more quickly than other
systems, ideally with interactive latencies? (3) How much
do our individual design decisions in�uence the system?

8.1 Experimental Setup

Datasets For the majority of our evaluation, we use the
datasets provided by the DARPA D3M competition. DARPA's
program on Data Driven Discovery of Models (D3M) has the
goal to build tools to automatically build models for a given
task with and without human feedback. As part of this pro-
gram DARPA performs competitions every 6 month between
all participating teams including teams from UC Berkeley,
Stanford, MIT, NYU, etc. Every competition compares all
the systems on datasets the teams have never seen before.
However, in order to prepare the teams for the competi-
tion, DARPA released over 300 datasets; 220 classi�cation
datasets, the smallest being 151 records large, the largest
being 1025000 records large, and 80 regression datasets, the
smallest being 159 and the largest being 89640 records large.
Here records refer to either tabular structured data, text-data,
images, and even audio-�les.

As mentioned before, our system heavily relies on the past
experience to �nd good solutions. We therefore randomly
split the datasets evenly into a training and test set; we use
the training datasets to build up history, and only report the
performance on the other half of the data.

Building Up Experience For the training datasets and tasks,
we then extensively try out various pipelines to build up past
experience. That is for every classi�cation dataset we try 66
general logical pipelines, and for every regression dataset 44
regression pipelines. In total we spend 30 minutes per train-
ing dataset to build up su�cient experience to be used for
future tasks. In total, we executed around half a millionphys-
ical pipelines, which would take roughly 3 days on a single
machine. However, the training is embarrassingly parallel
and with 20 machines only takes 4 hours.

BaselinesWe compare against four baselines: (1) hand-made
solutions from DARPA: while some DARPA solutions are
state-of-the-art highly tuned solutions, others only represent
reasonable solutions; a solution a relatively experienced data
scientist can manually come up with in a few days; (2)auto-
sklearn (version 0.4): automatically searched solutions from
auto-sklearn [11], which is the state-of-art open-source Au-
toML system; (3)TPOT(version 0.9) : an interactive AutoML
system using genetic programming [29]; (4) Azure (as of
March 2019): Microsoft Azure AutoML (based on [27]). The
experiments are restricted to AutoML, while feature engi-
neering and other transformation primitives are not evalu-
ated.



Figure 4: Comparison of Alpine Meadow with di�erent
systems regarding supported problem/dataset types.
The percentages are calculated by the ratio of datasets
supported by the system.

Metrics for Comparison We use F1 scores for classi�cation
problems and mean squared error for regression tasks. We
further adopted thenormalized scorenormAB of systemA
over systemB from DARPA D3M AutoML Competition:

normAB =
sA � sB

jsB j
Here the scoreSA (SB) is either the F1 score or the negation

of the mean squared error, such that the higher scores are
always better. Intuitively,normAB measures how much better
systemA performs over systemB. Note, that this normalized
score is biased; the best possible score is 1 but the worst
can be go to�1 . We decided to use it as it DARPA's main
measure, butrefrain from interpreting absolute values. In
addition to normalized scores, we also use relative ranks to
compare di�erent systems. For example, if systemA gets a
F1 score of 0.8 and systemB a score of 0.9, the rank is 1 and
2 for systemB andA respectively.Here absolute values are
more meaningful, thus we will use relative ranks, as well as
discretized scores (as in Figure 5) to compare between di�erent
implementations. Finally, we report an alternative unbiased
metrics and raw scores in Section A.3 & A.4.

Hardware Environment All experiments were conducted
on a single machine with a 40-core Intel(R) Xeon(R) CPU E5-
2660 v2 @ 2.20GHz and 256 GB RAM, running with Ubuntu
16.04 and Python 3.6.3. We set the number of workers to 80
on this machine to utilize all hyper-threads.

8.2 Comparison with other Systems
Functionality: We �rst comparedAlpine Meadowwith auto-
sklearn , TPOT, andAzure in terms of how many datasets
they can handle (shown in Figure 4). We found that none
of the other systems can handle image, audio, or collabo-
rative �ltering problems, whereasAlpine Meadowsupports
a wide range of problems. More surprisingly though, none
of the other systems is even able to handle all structured
classi�cation and regression tasks.

Performance: Next, to evaluate the performance of the
di�erent systems over the 150 test datasets, we allocated
each system a time bound of 1h, and for the comparison
of Alpine MeadowandAzure a time bound of 10 minutes.

One thing to note is thatAzure didn't support F1 scores,
so we use accuracy as the primary metric for classi�cation
problems for the comparison betweenAlpine Meadowand
Azure. For all systems, we compute the normalized scores
betweenAlpine Meadowand the respective system.

Higher scores meanAlpine Meadowoutperforms the other
system, whereas a normalized score of 0 means the systems
perform equally well. We further discretize the normalized
scores into �better':Alpine Meadowoutperforms the other
system, �same�: scores are equal, and �worse�:Alpine Meadow
performs worse than the other system. Here we also only
consider the datasets the system was actually able to run and
exclude all datasets for which a system failed or didn't �nd
a solution in the given time bound. The results of this exper-
iment are summarized in Figure 5. Overall,Alpine Meadow
outperforms or equalsAzure in 70% of the datasets, 79% for
auto-sklearn and 74% forTPOT.

Figure 5: Comparisons of Alpine Meadow with dif-
ferent systems across multiple test datasets. Normal-
ized scores are computed as Alpine Meadow's score
over the other system's score. Scores are discretized
into �better': Alpine Meadow outperforms other sys-
tem, �same�: scores are equal, and �worse�: Alpine
Meadowperforms worse than other system.

Comparison over Time Being able to provide solutions
within interactive latencies is one of the main design goals
of Alpine Meadow. We therefore measured the quality of
the top modelsauto-sklearn and TPOTreturn over time.
We excludedAzure from this experiment since they didn't
support the F1 score and only recently in April 2019 were
able to support all datasets. We ran all systems over our 150
test datasets for 1h again excluding failing datasets. Because
auto-sklearn only returns the result after a pre-de�ned
time span we run it with various increasing time limits.



(a) Number of Successful Datasets (b) Ranks (c) Normalized Score

Figure 6: (a) Time to produce �rst result per dataset (more early results implies better interactivity) (b) Relative
rank of the solutions averaged over all datasets (with 95% con�dence bands) over time (lower is better); (c) Nor-
malized scores over the by DARPA provided solutions averaged over all datasets over time (higher is better).

Figure 7: Incremental Comparison with auto-sklearn .
We compare all these systems together and compute
the averaged relative ranks (lower is better).

Figure 6(a) shows when the �rst result was returned by
the individual systems. We note thatAlpine Meadowis able
to return solutions for over a third of the datasets within
1 second and for all datasets after 26 seconds with an av-
erage time per dataset of 2.76 seconds. This can be largely
contributed to the adaptive execution strategy. The curve
of auto-sklearn went down because results were collected
from runs of di�erent time limits, so it found a pipeline for
some datasets in a run of short time while failed to do so in
a run of long time.

Second, in Figure 6(b) we show how the relative average
rank (over all test datasets) of the three systems evolves over
time. Lower rank is better.Alpine Meadowconsistently holds
the best rank throughout the entire time span.

Finally, Figure 6(c) depicts the average normalized score
(over all test datasets) where we normalize the system's score
over the scores of hand-made solutions. Higher normalized
score is better. We note that on average all three systems can
beat hand-made solutions butAlpine Meadowis consistently
leading especially within short time frames.

Incremental Comparison with auto-sklearn Figure 7
shows the incremental comparison (with more techniques
employed) betweenAlpine Meadowandauto-sklearn . As
we can see, if we only employ Bayesian Optimization in
Alpine Meadow, the performance is relatively close toauto-
sklearn , however, each individual technique (which is either
not in auto-sklearn or employed in di�erent ways)improves
the performance ofAlpine Meadow, including meta-learning,
cost-based pipeline selection and adaptive pipeline selection.

Figure 8: DARPA D3M AutoML competition (latest re-
sult in March 2018).

DARPA D3M competition As mentioned earlier, as part
of DARPA D3M's program, DARPA evaluates the auto-ml
solutions of all teams roughly every 6 month over datasets we
have never seen before and also against by DARPA created
expert solutions. Figure 8 shows the released results from
the last DARPA evaluation which was done March 2018
(DARPA did another evaluation over the summer, but still
hasn't released the results yet). In the table we anonymized
the other team names, which are from places like Stanford,
UC Berkeley, NYU, etc, and report the number of problems
the system can solve, if the system is better than the by
DARPA created expert solution, and the normalized score
to the DARPA expert solution. As it can be seen, currently
Alpine Meadowleads the competition.

8.3 Evaluation of Design choices
To evaluate our design choices, we ran our system for one
hour while enabling or disabling individual components or
optimizations. By comparing the results between with and
without individual design choices, we can have a better un-
derstanding of their bene�ts. The results are shown in Fig-
ure 9.

Logical Pipeline Plan Selection We ran our system with
four di�erent con�gurations to justify the e�ectiveness of
our cost and quality basedlogical pipelineselection tech-
niques: (1)Random, which always picks up alogical pipeline



(a) Logical Pipeline Plan Selection (b) Physical Pipeline Plan Selection (c) Pipeline Pruning

Figure 9: Evaluation of Design Choices. We reported the ranks of di�erent choices along with time (lower better).
randomly; (2)Quality , which only considers quality with-
out using history (cold-start) when selectinglogical pipelines,
and also has some probability to randomly select alogical
pipeline; (3)Quality+History extendsQuality by using
history of similar datasets to improve the selection; (4)Qual-
ity+History+Cost further improvesQuality+History by
considering cost to prioritize fast pipeline.

As we can see in Figure 9(a), at the early stage,Qual-
ity , Quality+History and Quality+History+Cost both
outperformsRandom, it is because them all choose pipelines
with high potential of quality. By taking history into consid-
eration,Quality+History is able to �nd good results after
the �rst 100 seconds, however, because it doesn't consider
cost, it prefers good but probably slow pipelines, it is not
as good asQuality+History+Cost in the early stage.Qual-
ity+History+Cost measures quality, history and cost at
the same time, so it achieves a good tradeo� between fast
response and good performance. Also, by preferring fast
pipelines, we can execute more pipelines and �ne tune them,
and have a better model of the search space. Eventually, these
methods all converge to high-quality solutions, whileRan-
domis still not as good since the search space is in�nite and
it is di�cult to �nd a good pipeline without any guidance.

Physical Pipeline Plan Generation We ran our system
with and without using Bayesian Optimization for the tuning
of hyper-parameters to justify the e�ectiveness of ourphys-
ical pipelineselection design choices: (1)Random, which picks
random hyper-parameters con�gurations; (2)Bayesian, which
uses Bayesian Optimization to �nd the next promising con-
�guration of hyper-parameters.

As shown in Figure 9(b), after a very short amount of time
(10 seconds)Bayesian achieves much better performance.
During the �rst several seconds,RandomandBayesianare
pretty comparable sinceBayesianessentially does random
search at �rst to learn about the hyperparameter space.

Pipeline Pruning We ran our system with and without us-
ing Adaptive Pipeline Selection to evaluate the e�ectiveness
of our pipeline early termination method. We compare two
modes: (1)NoPruning, which just trains a pipeline on the
train dataset and tests it on the validation dataset without
pruning anything; (2) Adaptive Pipeline SelectionAPS, which
prunes unpromising pipelines.

UsingAPSwe are able to to test much more pipelines, ob-
taining better solution in shorter amount of time as depicted
in Figure 9(c). However, as time goes onNoPruningperfor-
mances eventually will converge toAPSones: this is due to
a diminishing returns e�ect. Testing more and more pipe-
lines leads to decreasing improvements, since thephysical
pipelinessearch space has been gradually covered.

9 RELATED WORK

AutoML Systems: Most automated ML systems focus on
automated learning algorithm selection and hyper-parameter
tuning [4, 6, 13, 23, 24, 36, 45] to make machine learning
curation fully automated for non-ML experts.

Arguable most related to our approach is Auto-sklearn for
which we explained the di�erences in depth in Section 7.

Spark TuPAQ [36] and Hyperband [22] use variations of
multi-armed bandit (MAB) algorithm to better allocate com-
putational resources for hyper-parameter tuning. However,
their search space is limited to hyper-parameter sets for a
few (often, user speci�ed) learning algorithms. The output
ML pipeline is not practical in that the real-world problems
require end-to-end pipeline curation with careful feature
engineering/selection and data transformation. One major
drawback of MAB-based approach is that the number of
arms (a unique con�guration/pipeline) explodes with the
size of the search space, and the total number of arms can
easily exceed the memory size for a full search space with
models, hyper-parameters and pre-processors.

Auto-WEKA [17, 40] or its sister package Auto-sklearn
[11] solves the problem of learning algorithm selection and
their associated hyper-parameter optimization in a com-
bined search space. They also consider various feature se-
lection and data transformation methods to generate end-
to-end ML pipelines. Auto-WEKA uses Sequential Model-
based Algorithm Con�guration (SMAC) to explore the large
search space, which is partly discrete and conditional as each
selected algorithm has a di�erent set of associated hyper-
parameters. The idea is that, instead keeping track of all the
possible con�gurations, the search moves towards a more
promising region based on the previous search and evalua-
tion results. Unfortunately, standalone SMAC optimization
for the large search space can still run for hours if not days.



In addition, Auto-WEKA and its search space construction
is limited to classi�cation and regression problems only.

TPOT [29] is a tree-based pipeline optimization tool using
genetic programming while requiring little to no input nor
prior knowledge from the user.

Microsoft has recently introduced an AutoML tool via
Azure, based on the work of [27]. They build predictive ML
pipelines combining collaborative �ltering and Bayesian Op-
timization (BO). In particular they model thesearch space
as probability distribution de�ned by a Probabilistic Matrix
Factorization [20] and than use expected improvement as
acquisition function to choose the most promising pipelines.

In Alpine Meadow, we combine BO with MAB to construct
more compact (and dense) search space for Bayesian Opti-
mization, which results in more accurate and e�cient search.
Additionally, the current implementation can work with ex-
isting (WEKA [1] and Scikit-learn [30]) ML libraries as well
as custom ML primitives for more complex problems. As a
result,Alpine Meadowcan support more complex problem
types (e.g., graph matching, image and audio classi�cation,
etc.), and more importantly,Alpine Meadow�nds a compara-
ble ML pipeline much more e�ciently and can progressively
improve the quality of the pipeline.

The interactivity aspect di�erentiatesAlpine Meadowfrom
other systems: we design time-based cost models preferring
fast pipelines early on, incremental training pipelines, and
pipeline early termination to provide better interactivity.

Human-In-The-Loop Data Analytics: There are tools
and systems that focus on the human-in-the-loop aspect
of data science. Hellix aims to accelerate the iterative ML
model training with responsive user feedback [42]. Vizdom
[10] provides a unique pen-and-touch interface for the user
to easily construct ML work�ows and interactively re�ne
the analytics/ML pipelines. Most industry cloud ML services,
such as TensorFlow [2], Amazon SageMaker and Azure Ma-
chine Learning [27], fall into this category, in that they pro-
vide fully-managed environment for ML applications. Unlike
systems, the focus is not automated end-to-end pipeline cura-
tion; the services provide programmable APIs or web-based
interface for ML work�ow construction and managed com-
puting resources for the deployment.Alpine Meadowtargets
domain experts or users without ML expertise, and instead of
requiring the user to construct a working ML work�ow with
selected algorithms and pre-processors, the system generates
one based on the problem description and the data.

Neural Architecture Search: Also related to our work is
neural architecture search, in that we consider deep neural
networks as one of the learning algorithms.Alpine Meadow
currently uses transfer learning [41], a general framework for
re-using models leaned in one task for other tasks, in order

to quickly train a neural architecture model. This limits the
search space to a �xed architectures (e.g., the depth and width
of hidden layers, skip connections). Neural networks are hard
to design from scratch, and there are many proposed solution
using similar Bayesian Optimization [5,25] or Reinforcement
Learning techniques [45]. In the future, we will integrate
some of the automated neural architecture design techniques
for the tasks where deep learning is known to perform best.

10 CONCLUSION AND FUTURE WORK
We have discussed a new approach to Interactive Automated
Machine Learning. This low-latency automatic selection,
based on Multi-Armed Bandits, Bayesian Optimization and
Meta-Learning theory, e�ciently explores the pipeline search
space and enables domain experts to bring value to the opti-
mization process. We have testedAlpine Meadowon datasets
with very heterogeneous characteristics, from sample size
to feature types. Our experiments show that when com-
pared against state-of-the-art systems or expert-solutions,
Alpine Meadowgenerally generates better results in a shorter
amount of time. Nevertheless, the current implementation
of Alpine Meadowleaves some interesting open questions.

First of all, we have found that for many datasets the lack
of su�cient information/signal in the data is a major rea-
son for unsatisfactory performances. This issue can take the
form of a small training set, inadequate or missing features,
or simply an excess of noise. We plan to address those prob-
lems by adding external (relevant) information to the dataset,
performing what in jargon is calledData Augmentation. For
exampleAlpine Meadowalready boosted the performances
of an hand-wrist-size image regression problem using a pre-
trained ResNet neural network to extract high-level features
from the small train set (just 100 images). Given such en-
couraging results, we plan to applyData Augmentationto a
broader class of tasks under the form of feature extraction,
feature addition and sample enlargement . Second, we want
to explore new types of strategies for ourlogical pipeline
andphysical pipelineoptimizer. We plan to investigate a new
scoring model for dataset similarity in order to �nd rele-
vant datasets with better precision. We also plan to examine
more sophisticated early termination techniques by leverag-
ing shared statistics among the pruning threads. Finally, we
aim to support Neural Network architecture exploration and
compare our system against existing frameworks.
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