
DITA: Distributed In-Memory
Trajectory Analytics

Zeyuan Shang(MIT), Guoliang Li(Tsinghua), Zhifeng Bao(RMIT)
zeyuans@mit.edu

Motivation

Trajectory data is getting bigger and bigger

2 Billion Uber trips by 06/2016
62 Million Uber trips in 06/2016

Motivation

Applications of trajectory analytics

Trajectory Recommendation Road Planning Transportation Optimization

Motivation

Existing systems are limited in a number of ways
● Data locality
● Load balance
● Easy-to-use interface
● Versatility to support various trajectory similarity

functions

○ Non-metric ones: DTW, LCSS, EDR

○ Metric ones: Frechet

Background

● Trajectory: a sequence of multi-dimensional points
○ E.g., (1, 2) -> (2, 3) -> (3, 4) -> (5, 5)

● Distance Function between trajectories (e.g., Dynamic
Time Warping)

Background

Trajectory Similarity

Given two trajectories T and Q, a trajectory-based distance
function f (e.g., DTW), and a threshold !, if f(T, Q) ≦ !,we
say that T and Q are similar.

Overview of System

● Built on Spark SQL
● Support SQL and DataFrame
● Filter-verification framework

Overview of Methods

● Index
○ Partitioning
○ Global and Local Index

● Trajectory Similarity Search
○ Filter (global + local)
○ Verification

● Trajectory Similarity Join
○ Cost Models
○ Division-based Load Balancing

Indexing

Partitioning

ROOT

…

… … … …

first point

last point

Indexing

Global Index
○ If MinDist(q, MBR) ≤ !, then for any q ∈ MBR, Dist(p, q) ≤ !
○ If MinDist(q, #$%&) + MinDist(q, #$%') > !, then the partition (f, l)

doesn’t have trajectories similar with q
ROOT

…

MBR
1,NG

fMBR
1,NG

f
… … … …MBR

1,1
fMBR
1,1
f MBR

2,1
fMBR
2,1
f MBR

2,NG

fMBR
2,NG

f MBR
NG,1
fMBR
NG,1
f MBR

NG,NG

fMBR
NG,NG

f

ROOT

…

MBR
1,NG

lMBR
1,NG

l
… … … …MBR

1,1
lMBR
1,1
l MBR

2,1
lMBR
2,1
l MBR

2,NG

lMBR
2,NG

l MBR
NG,1
lMBR
NG,1
l MBR

NG,NG

lMBR
NG,NG

l

Indexing

● Pivot Point Based Distance Estimation

Indexing

Local Index

Trajectory Similarity Search

● Basic Idea
○ Global Pruning: find relevant partitions
○ Local Search: find similar trajectories

Trajectory Similarity Join

● Cost Models
● Join Graph
● Weight of edges (a->b)

● a sends candidate trajectories to b
● Transmission cost of a (data transmitted)
● Computation cost of b (candidate pairs)

● Built by Sampling

A
B

Trajectory Similarity Join

● Cost Models
● Join Graph
● Weight of edges (a->b)

● a sends candidate trajectories to b
● Transmission cost of a (data transmitted)
● Computation cost of b (candidate pairs)

● Built by Sampling
● Goal: minimize the maximum total cost

A
B

Trajectory Similarity Join

● Graph Orientation

A
B

A
B

Trajectory Similarity Join

Greedy Algorithm

A
B

Initialize Find partition with largest total cost Repeat

A B A B

Trajectory Similarity Join

● Limitation of Graph Orientation

○ It is greedy

○ Doesn’t work well for partitions with inherently huge cost

Trajectory Similarity Join

● Division-based Load Balancing

○ Division unit: the 98% quantile of total cost

○ For partitions whose total cost bigger than the division unit, we
divide them into corresponding number of units

A
B A B

Experimental Results

● Setup

○ 64 nodes with a 8-core Intel Xeon E5-2670 CPU and 24GB RAM

○ Hadoop 2.6.0 and Spark 1.6.0

○ Datasets

Experimental Results

● Baseline Methods
○ Naive
○ Simba (SIGMOD 2016)
○ DFT (VLDB 2017)

Experimental Results

Search on Large Datasets (141M trajectories, 703GB)

Experimental Results

Join on Large Datasets (65M trajectories, 312GB)

Conclusion

DITA: Distributed In-memory Trajectory Analytics

● Support trajectory similarity search and join with SQL and DataFrame API
● Support most trajectory distance functions
● Filter-verification Framework

○ Global and Local Index
○ Optimizing Verification

● Experimental results show that DITA outperformed state-of-the-art
approaches significantly

● Future Work

