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Data Science is Difficult for Domain Experts

+ Data science requires many skills: programming, statistical, machine learning
« Domain experts don't have such backgrounds while programmers or researchers don't have domain
knowledge
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DARPA Data-Driven Discovery of Model (D3M)
AutoML Competition

Solved Problems | % of Tasks Beat Baseline
Alpine Meadow 100% 80%
System 2 40% 27%
System 3 40% 13%
DARPA Baseline 100% 0%
System 4 20% 7%
System 5 87% 47%
System 6 27% 7%
System 7 60% 20%
System 8 87% 53%
System 9 60% 20%
System 10 60% 20%

Goal: develop automated model discovery systems for domain experts

Evaluation on real world datasets, including structured classification and regression task, image classification
and measuring, audio transcription, among others

System 2-10 are competing teams from UC Berkeley, Stanford, NYU, ....



We emulate a Data Scientist

Can you predict the sales “What modeling options
next month for me? do | have?

“"What should [ try first?”

How can | get some quick
results?




Overview of Alpine Meadow

“What modeling
options do | have?”

Rule-based Search
Space Expansion

“What should | try first?”

Preselection Based On Past
Experience (Learned
Knowledge Base)

How can | get some quick results?

components: UniformintegerDistrbution
(ower=10, upper=256, default=128)

alpha: ted lossilog
average: False  penalty: 1.2
epsilon: Te-4 _power_t 0.25

tegoricalDistribution(..)

Adaptive sampling-based
pruning
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Alpine Meadow

Not Your Normal AutoML-Tool: Built For Interactive Results

Rule-Based Search Space Expansion

* Rules added by Experts and learned from thousands of publicly available pipelines
(Kaggle and OpenML)

« Example rules:
e unscaled numeric feature » MinMaxScaler, Mean Normalizer
* categorical feature = use encoder (label or one hot)
* classification > SVM with default learning rate of 0.001 - 1.00
* Image classification -> pre-trained neural network (transfer learning)
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Looking into the Search Space
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Every box represents a full logical pipeline
¥ Including feature engineering, preprocessing and model family
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Looking into the Search Space

Extract Targets




Overview of Alpine Meadow
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Alpine Meadow

Not Your Normal AutoML-Tool: Built For Interactive Results
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{ 2 b “"What should | try first?”

Preselection Based On Past Experience

« Expected quality/time trade-off (reliable fast pipelines first,
high-risk expensive pipelines later)

* Learned from past experience

« Finally, translate pipeline to python code

For example:
* Gradient Boosting Trees are most-likely a good starting point for the given dataset
» Given the data size, don't even try to use slow models, e.g., SVM and neural nets



Alpine Meadow

Not Your Normal AutoML-Tool: Built For Interactive Results

Warm-starting: build the knowledge

Run Alpine Meadow on lots of datasets and collect all the pipeline traces

For a new dataset, find some “similar” datasets we have seen before (meta-learning) and
transfer knowledge from them

Similarity is based on some trained model to predict similarity based on meta-features of a
dataset

Transfer

using the cost model




Alpine Meadow

Not Your Normal AutoML-Tool: Built For Interactive Results

Pipeline Selection

» Search space -> Logical -> Physical
* Combination of multi-armed bandit and Bayesian Optimization, while previous
methods only use one of them




Alpine Meadow

Not Your Normal AutoML-Tool: Built For Interactive Results

Logical Pipeline Selection

« Balance between exploitation and exploration
« Exploitation: exploiting good boxes
« Exploration: avoid being trapped in a local optimum

Logical
Pipeline
Selection




Alpine Meadow

Not Your Normal AutoML-Tool: Built For Interactive Results

Cost-aware Scoring Model

Multi-armed bandit problem

* Use past history to select promising logical pipelines
(warm-starting from the knowledge bases)

« Consider cost and performance at the same time

* p: mean of performance (e.g., accuracy)

* c: mean of cost (e.g., time)

« §: standard deviation of performance

* ©: constant to balance risk

* Selecting pipeline with probability proportional to S

_,+ 2
_H+C6



Alpine Meadow

Not Your Normal AutoML-Tool: Built For Interactive Results

Physical Pipeline Selection

* Hyper-parameter tuning: Bayesian Optimization
» Efficient method for black-box function optimization
*  Model the function behavior and select the next promising one




Alpine Meadow

Not Your Normal AutoML-Tool: Built For Interactive Results

Physical Pipeline Selection

* Hyper-parameter tuning: Bayesian Optimization
» Efficient method for black-box function optimization
*  Model the function behavior and select the next promising one
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Denormalize

Extract Targets Extract Attributes

Extract Numerical Extract Categorical

i components: UniformintegerDistribution
(lower=10, upper=256, default=128) |

| SGD Classifier

alpha: 1e-4 loss: log i loss: UniformCategoricalDistribution(...)

average: False  penalty: 1.2 | average: True/False
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Overview of Alpine Meadow

“What modeling
options do | have?”

Rule-based Search
Space Expansion

“"What should | try first?”

Preselection Based On Past
Experience (Learned
Knowledge Base)

How can | get some quick results?
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Adaptive sampling-based
pruning




Alpine Meadow

Not Your Normal AutoML-Tool: Built For Interactive Results

® How can | get some

e
{ '\  quick results?

Try pipeline first on a small sample

* Observe training and test error
* If pipeline performs well, increase sample size



Alpine Meadow

Not Your Normal AutoML-Tool: Built For Interactive Results

Adaptive Pipeline Selection

« Train error as the lower bound the test error
* Prune if the train error is beyond the current best validation error
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Alpine Meadow

Not Your Normal AutoML-Tool: Built For Interactive Results
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Experiment Setup

e 300 datasets from DARPA (including manual-made baselines from MIT-LL)
o Classification and regression datasets collected from Kaggle, OpenML, UCI ML Repository
o 150 for training (learning the knowledge-base) and another 150 for evaluation

e A 40-core machine with various time limits (10s, 60s, .., 10mins, 30mins, Thr)

Score —Baseline Score

e FEvaluation Metric: normalized score = :
Baseline Score

o E.g., the baseline score can be accuracy (for classification) or negative mean squared error (for
regression)

e Comparison against state-of-the-art AutoML methods and hand-made baselines



Alpine Meadow: Not Only Tabular

Azure auto-sklearn TPOT Alpine Meadow

Tabular Classification 100%
Tabular Regression 100% 100% 100%

Graph Matching  Not Supported Not Supported ~ Not Supported 100%
Community Detection  Not Supported Not Supported  Not Supported 100%
Image Classification  Not Supported Not Supported ~ Not Supported 100%
Audio Classification  Not Supported ~ Not Supported  Not Supported 100%
Collaborative Filtering  Not Supported Not Supported  Not Supported 100%




Alpine Meadow:. Better Results Faster

0.8
0.6

0.4
0.2

0.0

|
o
(N)

normalized score

|
o
I

/ —— Alpine Meadow
-=-=- auto-sklearn
....... TPOT

I |
o o
(0] 0)}

N

100 101 102 103
time (second)

» 150 dateset used for learning the knowledge-base and another 150 for evaluation
* Results averaged over 150 datasets



Alpine Meadow:. Better Results Faster

Alpine Meadow vs. Azure
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* Democratizing Data Science requires rethinking of the entir

analytics stack
* Alpine Meadow: Interactive Virtual Data Scientist

* Rule-based Search Space
» Logical and Physical Pipeline Selection
» Adaptive Pipeline Evaluation

+ Evaluation shows good performance with short latency
compared against start-of-the-art
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