
Balance-Aware Distributed
String Similarity-Based

Query Processing System

Ji Sun+, Zeyuan Shang*, Guoliang Li+, Dong Deng#, Zhifeng Bao$

Tsinghua+, MIT*, Rutgers#, RMIT$



Big Data Comes with Big Problem 

Volume

Quality

Reference: https://www.aibook.in/2018/12/data-quality-in-hindi.html

https://www.aibook.in/2018/12/data-quality-in-hindi.html


Cleaning and Integration becomes Necessary

Volume

Quality

Reference: https://www.aibook.in/2018/12/data-quality-in-hindi.html

https://www.aibook.in/2018/12/data-quality-in-hindi.html


Cleaning and Integration is Expensive

Reference: https://heap.io/blog/data-stories/data-virtualization

https://heap.io/blog/data-stories/data-virtualization


String Similarity in Cleaning and Integration

Deduplication Standardization Normalization

Integration …



Challenges of Large-Scale String Similarity
● Scalability

○ Serial algorithm is not efficient enough for large data

○ State-of-the-art parallel algorithms have load balance problem

● Flexibility

○ Hard to support different similarity functions

○ Operations not only include string similarity

● Easy-to-use interface (e.g., SQL or DataFrame)



Distributed-In-Memory Analytics for String Similarity

● Built over Spark
● Interfaces: SQL, DataFrame
● Supported Similarity Functions

○ Set-based Similarity Functions

○ Character-based Similarity Functions

■ Edit distance

● Workflow



Overview of DIMA
● Indexing: Global and Local index

● Balance-aware Search and Join

● Cost-based Optimizations

● Top-K Search and Join (not covered)



Overview of DIMA
● Indexing: Global and Local index

● Balance-aware Search and Join

● Cost-based Optimizations

● Top-K Search and Join (not covered)



Segment-based Pruning
● Partition each string into N disjoint segments
● If two strings have more than Θ mis-matched (non-equal) segments, 

which means they have more than Θ mis-matched tokens
● Θ can be computed for each similarity function given the threshold 𝛕,

so if they have Θ mis-matched (non-equal) segments, they cannot be
similar



Two-layer Indexing
● Global Index (on each worker)

○ Mapping from the segment to the partitions containing this segment

○ Small so that it can be replicated to each worker

● Local Index (for each partition)

○ Segment and its inverted list

○ Reside in local memory
Global

Local Local Local



Deletion Segment
● Deletion segment: remove a token from the segment

○ Assume the original segment is {b, d, f}, then we will have a deletion 
segment {{b, d}, {b, f}, {d, f}}

● Derive similar lemma for number of mismatches of tokens, but one
mismatch of segments means two mismatches of tokens.

𝑆𝑖𝑔% : regular segment

𝑆𝑖𝑔& : deletion segment



Hybrid Pruning
● Regular Segment
● Deletion Segment
● We can compute the number of mismatched tokens based on 

mismatch of segments, to prune some candidate pairs.

● Length-based: lengths of two strings must be within some interval 
which can be derived from the given threshold



Overview of DIMA
● Indexing: Global and Local index

● Balance-aware Search and Join

● Cost-based Optimizations

● Top-K Search and Join (not covered)



Segment Generation
● Given a query, we compute its segments
● For each segment i, we can either (use Z[i] to denote) while ∑𝑍[𝑖] ≥ 𝑛- (𝑛- is the number of 

segments)

○ Don’t use it (Z[i] = 0)

○ Use the regular segment (Z[i] = 1)

○ Use the deletion segment (Z[i] = 2)
● Based on the size of inverted list of each segment, we can compute the number of candidates 

(so this becomes an optimization problem to minimize it)



Balance-aware Segment Generation
● Extend this optimization problem to a distributed setting
● Assume that there are P partitions, and each partition has a workload 

W (estimated by the number of candidates in the previous slide), we 
aim to minimize

max(𝑊/, 𝑊1 ,…, 𝑊2)

● This can be solved by dynamic programming



Search Procedure
● Generate segments for the given query using DP
● Global Search

○ Query the mappings to find relevant partitions

● Local Search

○ Query inverted list



Join Procedure
● Similar with search, but for many records (strings) now
● This becomes an NP-hard problem
● A greedy algorithm

○ Compute optimal segments for each record individually

○ Iterative algorithm

■ Compute the workload for each segment if we use it or use the deletion

■ Each round we take the segment with minimum workload, and we use corresponding 
segment strategy (use it directly or use the deletion segment), then the overall 
workload (the optimization goal) is decreased

■ Loop until all segments have been processed



Overview of DIMA
● Indexing: Global and Local index

● Balance-aware Search and Join

● Cost-based Optimizations

● Top-K Search and Join (not covered)



Cost-based Optimizations
● Cost model can be easily derived based on previous slides (based on 

the number of candidates)

● Select number of partitions

● Partition scheme (how to partition segments)



Experiments Setup
● Datasets

● Jaccard similarity function (refer to paper for other functions)
● Baselines

○ Map-Reduce implementations

○ Partitioned-by-data methods
● 64-node cluster while each node has a 8-core Intel Xeon E5-2670 v3 

2.30GHz and 48 GB RAM



Efficient Search and Join



Evaluation on Big Dataset (100M records)



Zeyuan Shang
zeyuans@mit.edu

Special Thanks to:

• DIMA: Distributed In-Memory Analytics for String 
Similarity Query

• Methods
• Global and Local Indexing

• Balance-aware Search & Join

• Cost-based Optimizations

• Outperform state-of-the-art studies by several 
orders of magnitude with good scalability


