
K-Join: Knowledge-Aware Similarity Join
(Extended Abstract)

Zeyuan Shang Yaxiao Liu Guoliang Li Jianhua Feng
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.

zeyuanxy@gmail.com; {liguoliang,fengjh}@tsinghua.edu.cn,liuyx12@mails.tsinghua.edu.cn

Abstract—Similarity join is a fundamental operation in data
cleaning and integration. Existing similarity-join methods utilize
the string similarity to quantify the relevance but neglect the
knowledge behind the data, which plays an important role in
understanding the data. Thanks to public knowledge bases,
e.g., Freebase and Yago, we have an opportunity to use the
knowledge to improve similarity join. To address this problem, we
study knowledge-aware similarity join, which, given a knowledge
hierarchy and two collections of objects (e.g., documents), finds
all knowledge-aware similar object pairs. To the best of our
knowledge, this is the first study on knowledge-aware similarity
join. There are two main challenges. The first is how to quantify
the knowledge-aware similarity. The second is how to efficiently
identify the similar pairs. To address these challenges, we first
propose a new similarity metric to quantify the knowledge-
aware similarity using the knowledge hierarchy. We then devise a
filter-and-verification framework to efficiently identify the similar
pairs. We propose effective signature-based filtering techniques
to prune large numbers of dissimilar pairs and develop efficient
verification algorithms to verify the candidates that are not
pruned in the filter step. Experimental results on real-world
datasets show that our method significantly outperforms baseline
algorithms in terms of both efficiency and effectiveness.

I. INTRODUCTION
As an important operation in data cleaning and integra-

tion, similarity join has attracted significant attention from
the database community. It has widespread real applications
such as web clustering, duplicate detection, and collaborative
filtering [1], [4]. Given two collections of objects, similarity
join aims to find all similar pairs from the two collections.
There are many functions to quantify the similarity between
objects, such as Jaccard, Cosine and edit distance [2], [3].
However these functions only utilize the string similarity
to quantify the similarity between objects but neglect the
knowledge behind the data, which plays an important role in
understanding the data. To address this problem, we propose
knowledge-aware similarity join, which, given a knowledge
hierarchy and two collections of objects (e.g., POIs), finds all
knowledge-aware similar object pairs. Note that our method
can facilitate many real-world applications. For example, Yelp
wants to classify similar restaurants together to improve restau-
rant recommendations, and Amazon wants to classify similar
products together using the knowledge information.

To the best of our knowledge, this is the first study on
knowledge-aware similarity join. There are two main chal-
lenges to address this problem. The first is how to quantify the
knowledge-aware similarity. The second is how to efficiently
identify the similar pairs. To address these challenges, we

∗Guoliang Li is the corresponding author.

utilize the knowledge hierarchy to quantify the knowledge-
aware similarity and propose a new similarity metric to com-
pute knowledge-aware similarity. We then devise a filter-and-
verification framework to efficiently identify the similar pairs.
We devise signature-based filtering techniques to prune large
numbers of dissimilar pairs and develop efficient verification
algorithms to verify the candidates that are not pruned in the
filter step. To summarize, we make the following contributions.
(1) We propose a knowledge-aware similarity metric to quan-
tify the similarity based on knowledge hierarchy and formulate
the knowledge-aware similarity join problem. To the best of
our knowledge, this is the first work on knowledge-aware sim-
ilarity join. (2) We propose a filter-and-verification framework
to efficiently identify the similar pairs. The filter step prunes
many dissimilar pairs and the verification step verifies the
candidate pairs that are not pruned in the filter step. (3) In
the filter step, we generate high-quality signatures based on the
knowledge hierarchy such that if two objects have no common
signatures, they cannot be similar. We utilize these signatures
to prune dissimilar pairs. (4) It is rather expensive to directly
compute the knowledge-aware similarity and we propose an
adaptive framework to verify the candidates. We estimate
the upper bounds and lower bounds of candidate pairs. We
utilize upper bounds to prune dissimilar pairs and use lower
bounds to avoid computing the knowledge-aware similarity.
(5) We have conducted an extensive set of experiments on
real datasets. Experimental results show that our method
significantly outperforms the baseline algorithms in terms of
both efficiency and effectiveness.

II. PROBLEM FORMULATION

Knowledge-Aware Similarity For Elements. We model each
object (e.g., a POI) as a set of elements (e.g., tokens) by
tokenizing the object. We first discuss how to quantify the
similarity between elements and then propose a knowledge-
aware similarity metric for objects. We model a knowledge
hierarchy as a tree structure T and how to support the
directed acyclic graph (DAG) structure is discussed in our full
paper [6]. Given two elements ex, ey , we first map them to
tree nodes in T . Here we assume that each element matches
a single node and how to support the case that each element
matches multiple tree nodes is discussed in our full paper.
If the context is clear, we also use ex and ey to denote
the corresponding matched nodes. Let LCAex,ey denote their
lowest common ancestor (i.e., the common ancestor of the two



nodes and any of its descendant will not be a common ancestor
of the two nodes), and dex denote the depth of node ex (the
depth of the root is 0). Intuitively, the larger dex,ey = dLCAex,ey
is, the two elements are more similar.

Definition 1 (Knowledge-Aware Similarity for Elements).
Given a knowledge hierarchy T and elements ex and ey , their
knowledge-aware similarity is SIM(ex, ey) =

dex,ey
max(dex ,dey )

.

An element may map to multiple tree nodes due to (1)
an element may appear in multiple nodes; (2) an element
may have synonyms; and (3) an element may have typos and
may map to multiple tree nodes that approximately match
the element to tolerate typos). Thus we enumerate every
node of an element and compute the maximum similarity,
i.e., SIM(ex, ey) = max(e′x,e′y)

de′x,e′y
max(de′x

,de′y
)ϕ(ex, e

′
x)ϕ(ey, e

′
y)

where e′x and e′y are mapping nodes of ex and ey respectively,
and ϕ(ex, e′x) is the similarity between ex and e′x. If ex = e′x
or they are synonyms, ϕ(ex, e′x) = 1; otherwise, we utilize
normalized edit distance (edit similarity) to quantify their
similarity, i.e., ϕ(ex, e′x) = 1− ED(ex,e

′
x)

max (|ex|,|e′x|)
, where ED(ex, e

′
x)

is the edit distance of ex and e′x and |ex| is the length of ex.
Knowledge-Aware Similarity For Objects Sx and Sy . We
construct a bigraph G = ((Sx, Sy), E), where E is the edge
set. If an element in Sx is similar to an element in Sy , there
is an edge between them whose weight is the knowledge-
aware similarity between the two elements. To avoid involving
dissimilar pairs, we remove all the edges whose weights are
smaller than a given threshold δ. To avoid mapping an element
from one object to multiple elements in the other object, we
use the graph matching to compute the similarity. A matching
in a bigraph is a set of edges without common elements,
and the maximum weight matching is the matching with the
maximum edge weight. We use the maximum weight matching
of G as the fuzzy overlap of Sx and Sy , denoted by Sx∩̃δSy .
Using the fuzzy overlap, we define knowledge-aware similarity
on two objects. Here we take Jaccard as an example and how
to support other metrics is discussed in our full paper.

Definition 2 (Knowledge-Aware Similarity for Objects).
Given a knowledge hierarchy T , objects Sx and Sy , and an
element similarity threshold δ, the knowledge-aware similarity
of Sx and Sy is SIMδ(Sx, Sy) =

||Sx∩̃δSy||
|Sx|+|Sy|−||Sx∩̃δSy||

, where
|Sx| is the size of Sx and ||Sx∩̃δSy|| is the sum of the weights
of edges in the maximum matching.

Definition 3 (Knowledge-Aware Similarity Join). Given a
knowledge hierarchy T , two object sets R and S , an element
similarity threshold δ and an object similarity threshold τ ,
a knowledge-aware similarity join finds all similar pairs
〈r, s〉 ∈ R × S, such that SIMδ(r, s) ≥ τ .

III. THE K-JOIN FRAMEWORK

Framework. We propose a filter-verification framework. The
filter step generates signatures for each object (if two objects
have no common signatures, they cannot be similar). We take
the objects pairs with common signatures as candidates. The
verification step verifies the candidates.

Filtering. Given a knowledge hierarchy T and an element
similarity threshold δ, for any two similar elements, we can
estimate the minimum depth of their lowest common ancestor
(LCA). Suppose ex and ey are two different elements, and their
element similarity is

dex,ey
max(dex ,dey )

≤ dex,ey
dex,ey+1 . If ex and ey are

similar, we have
dex,ey
dex,ey+1 ≥ δ, and dex,ey ≥ δ

1−δ . Thus if two
different elements are similar, the depth of their LCA is at least
dδ = d δ

1−δ e. For any element e with depth de, if de < dδ ,
we select e as its node signature, i.e., ge = e. If de ≥ dδ ,
we select the ancestor of e whose depth is dδ (denoted by
edδ ) as its signature, i.e., ge = edδ . Given an object S, we
generate its node signature set GS = ∪e∈S{ge}. Then, we fix
a global order for the node signatures of all the elements. Let
ĜS = GS [1, |S| − (τS − 1)], which is the subset of GS with
the first |S| − (τS − 1) node signatures. We call ĜS the node
prefix of node signatures of S. Then if ĜSx ∩ ĜSy = φ, Sx
and Sy cannot be similar. Thus we can use ĜSx to do filtering.
Verification. If |Sx∩̃δSy|

|Sx|+|Sy|−|Sx∩̃δSy|
≥ τ , |Sx∩̃δSy| ≥

τ
1+τ (|Sx|+|Sy|). We can estimate an upper bound of |Sx∩̃δSy|
and if the upper bound is smaller than τSx,Sy=d τ

1+τ (|Sx| +
|Sy|)e, we prune the pair. Otherwise, we compute the real
similarity. If the similarity exceeds the threshold, the pair is
similar; the pair is dissimilar otherwise.

IV. EXPERIMENTS

Datasets. We used four real-world datasets: Pub, Res, POI
and Tweet. Pub contained 1879 papers and Res contained
864 restaurants. These two datasets had ground truths [8].
We used them to evaluate the effectiveness. POI contained 1
million POIs and Tweet contained 1 millions crawled tweets.
We used them to evaluate efficiency.
Baseline. We compared with state-of-the-art methods, approx-
imate string join FastJoin [7], a synonym based method
Synonym [5], and a crowdsourcing based method Crowd [8].
Experimental results showed that our method significantly
outperformed baselines in both quality and efficiency.

ACKNOWLEDGMENT
This work was supported by 973 Program of China

(2015CB358700), NSF of China (61422205, 61373024, 61632016,
61472198), FDCT/116/2013/A3, and FDCT/007/2016/AFJ.

REFERENCES

[1] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity
search. In WWW, pages 131–140, 2007.

[2] D. Deng, G. Li, J. Feng, and W.-S. Li. Top-k string similarity search
with edit-distance constraints. In ICDE, pages 925–936, 2013.

[3] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A partition-based method
for similarity joins. PVLDB, 5(3):253–264, 2011.

[4] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: an effective 3-in-
1 keyword search method for unstructured, semi-structured and structured
data. In SIGMOD, pages 903–914, 2008.

[5] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String similarity measures
and joins with synonyms. In SIGMOD, pages 373–384, 2013.

[6] Z. Shang, Y. Liu, G. Li, and J. Feng. K-join: Knowledge-aware similarity
join. IEEE Trans. Knowl. Data Eng., 28(12):3293–3308, 2016.

[7] J. Wang, G. Li, and J. Feng. Fast-join: An efficient method for fuzzy
token matching based string similarity join. In ICDE, pages 458–469,
2011.

[8] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging
transitive relations for crowdsourced joins. In SIGMOD, pages 229–240,
2013.


	Introduction
	Problem Formulation
	The K-Join Framework
	Experiments
	References

